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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have

achieved dominance worldwide and keep on evolving. Convergent evolution of XBB line-

ages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in vari-

ants with substantial growth advantages, such as EG.5, FL.1.5.1, XBB.1.5.70, and HK.3.

Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of

F456L, while the epistatic shift caused by F456L enables the subsequent convergence of

L455F through ACE2 binding enhancement and further immune evasion. L455F and F456L

evade RBD-targeting Class 1 public NAbs, reducing the neutralization efficacy of XBB

breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F sin-

gle substitution significantly dampens receptor binding; however, the combination of L455F

and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance

and ACE2 binding affinity. The perturbed receptor-binding mode leads to the exceptional

ACE2 binding and NAb evasion, as revealed by structural analyses. Our results indicate the

evolution flexibility contributed by epistasis cannot be underestimated, and the evolution

potential of SARS-CoV-2 RBD remains high.
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Author summary

The continuous evolution of SARS-CoV-2 presents a challenge to global public health and

the development of vaccines and treatments against COVID-19. Recently, an adjacent res-

idue alteration, L455F+F456L, also known as “FLip”, on the receptor-binding domain of

the virus, which has been identified in multiple strains of the virus, alters how the virus

interacts with human cells and immune response. We show that the combination of these

mutations synergistically increases the virus’s ability to bind to ACE2, the primary recep-

tor on cell surfaces, enabling it to specifically escape a public type of neutralizing antibod-

ies elicited by vaccination and infection, and the molecular mechanisms are explained by

structural analyses. The enhancement of receptor binding increases the potential of the

virus to further accumulate immune evasive mutations. These findings broaden our

understanding of SARS-CoV-2 evolution and highlight the importance of paying atten-

tion to these ongoing antigenic drifts in the virus as we continue to develop and evaluate

current antibody therapeutics and vaccines.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously circu-

lating and evolving worldwide [1–4]. Since late 2022, XBB* variants, especially XBB.1.5 and

other XBB derivatives with a proline on residue 486 (486P) on the receptor-binding domain

(RBD) of the virus Spike glycoprotein (S) started to dominate, which demonstrated enhanced

binding to human ACE2 while maintaining extremely strong capability of evading humoral

immunity [5–8]. These immune-evasive lineages are still continuously accumulating more S

mutations, such as R403K, V445S, L455F, F456L and K478R, that may lead to further shift in

antigenicity and escape from neutralizing antibodies elicited by repeated vaccination and

infection [9,10]. Some immune escape mutations, represented by F456L, even convergently

appeared recently in multiple independent XBB derivative strains, such as EG.5, XBB.1.5.10,

FE.1 and FD.1.1, indicating strong selection pressure due to herd immunity (Fig 1A) [11,12].

By October 2023, over 70% of newly uploaded SARS-CoV-2 sequences carry F456L mutation.

Furthermore, multiple independent XBB lineages with both F456L and L455F are growing

rapidly in different countries, such as XBB.1.5.70/GK.* in Brazil, the United States, and Can-

ada, and HK.3 (EG.5.1.1.3) in China (Fig 1B and 1C) [12–14]. However, the proportion of line-

ages with L455F mutation but without F456L is extremely low, exhibiting no growth

advantage (Fig 1C). Interestingly, L455 and F456 are two adjacent residues on the receptor-

binding motif (RBM) of SARS-CoV-2 RBD, and the variant is just the “flipping” of the two res-

idues, L455-F456 to F455-L456, also known as the “FLip” mutant (Fig 1B). These two sites are

also located on a critical epitope that targeted by the public IGHV3-53/3-66 Class 1 NAbs [15–

17]. Mutations on these sites are likely to escape this type of NAbs that are abundant in vacci-

nated and convalescent individuals, leading to substantial reduction of protection efficiency

[18,19]. It is crucial to investigate the impacts on immune evasion and infection efficiency,

especially for recent convalescents who recovered from XBB breakthrough infections, and the

underlying mechanism of such synergistic effects that enables the unexpected advantage of

L455F mutation on the basis of XBB*+F456L lineages, to explain the exceptional growth

advantage of such lineages.
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Results

L455F and F456L evade convalescent plasma from XBB BTIs and reinfections

To interrogate whether L455F, F456L, and their combination leads to enhanced resistance to

neutralizing antibodies elicited by vaccination and infection, we collected plasma samples

Fig 1. Convergent evolution and circulation of SARS-CoV-2 XBB variants. (A) RBD mutations carried by emerging XBB subvariants. L455F, F456L, and

K478R are observed in multiple independent lineages, demonstrating high selection pressure and convergent evolution. Lineages are defined by Pango

(https://github.com/cov-lineages/pango-designation). (B) Structural representation of the position of two convergently mutated residues L455 and F456

(colored in red) on the receptor-binding motif of XBB.1 RBD in complex with human ACE2 (colored in brown) (PDB: 8IOU). (C) Proportion of XBB

subvariants since March to October 2023 with S486P (represented by XBB.1.5), S486P+F456L (represented by EG.5), or S486P+L455F+F456L (represented

by XBB.1.5.70 and HK.3) among uploaded sequences in the World, Brazil, China, and United States. F456L and L455F+F456L exhibit growth advantage

compared to their ancestor (XBB*+S486P). Data are collected from CoV-Spectrum (https://cov-spectrum.org).

https://doi.org/10.1371/journal.ppat.1011868.g001
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from three cohorts with distinct SARS-CoV-2 immunization histories. All participants in the

three cohorts had received triple doses of CoronaVac or BBIBP/WIBP/CCIBP-CorV (inacti-

vated vaccines based on SARS-CoV-2 ancestral strain developed by Sinovac and Sinopharm,

respectively) before any known infection [20,21]. The first cohort includes participants who

were breakthrough-infected by BA.5 or BF.7 (66 samples), the second infected by XBB* with

S486P (mainly XBB.1.9.1/XBB.1.9.2, 27 samples), and the third experienced BA.5/BF.7 BTI

before XBB*+486P reinfection (mainly XBB.1.9.1/XBB.1.9.2, 54 samples). The infected strains

were inferred from the epidemiological data and uploaded SARS-CoV-2 sequences in Beijing

and Tianjin, China, where the patients were recruited, during the infections (S1 Table). We

evaluated their neutralization activities against SARS-CoV-2 D614G (B.1), BA.5, XBB.1.5,

XBB.1.16 (XBB.1+E180V+K478R+S486P), XBB.1.5+F456L (represented by EG.5), EG.5.1

(EG.5+Q52H), XBB.1.5+F456L+K478R (represented by FL.1.5.1), and XBB.1.5+L455F+F456L

(represented by XBB.1.5.70/GK.* and HK.3) spike-pseudotyped vesicular stomatitis virus

(VSV). Consistent with previous studies, single BA.5/BF.7 or XBB BTI cannot elicit NAbs that

efficiently neutralize all XBB subvariants due to immune imprinting, with 50% neutralization

titers (NT50) lower than 100 [9,22] (Figs 2A and S1). In contrast, convalescent plasma samples

from the reinfection cohort exhibit higher titers against BA.5 than D614G and neutralize XBB

subvariants well, which indicates that second exposure to Omicron helps alleviate imprinting

[9,18,22,23]. Notably, compared to F456L which is known to escape many NAbs elicited by

Omicron reinfection, the additional L455F substitution further causes substantial evasion of

plasma from the reinfection cohort [18,24,25]. Specifically, an additional L455F mutation

based on XBB.1.5+F456L or EG.5 reduces plasma NT50 by 1.2-fold and 1.3-fold in the XBB

BTI and reinfection cohorts, respectively, and the same degree of additional evasion could also

been observed when comparing “FLip” with XBB.1.5+L455F (Fig 2A and 2B). However, the

two single substitution mutants, XBB.1.5+L455F and XBB.1.5+F456L, exhibit similar level of
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Fig 2. Emerging XBB subvariants evade neutralization of XBB convalescent plasma. 50% neutralization titers against SARS-CoV-2

variants of convalescent plasma from individuals who received triple doses of CoronaVac and breakthrough-infected by XBB*+486P (A, 27

samples) or BA.5/BF.7 followed by XBB*+486P reinfection (B, 54 samples). VSV-based pseudoviruses are used. Statistical significances and

geometric mean titer (GMT) fold-changes are labeled in comparison with neutralization against XBB.1.5+F456L (the first line), XBB.1.5

+L455F (the second line), and D614G (the third line). Two-tailed Wilcoxon signed-rank tests of paired samples are used. *, p<0.05; **,
p<0.01; ***, p<0.001; ****, p<0.0001; NS, not significant (p>0.05).

https://doi.org/10.1371/journal.ppat.1011868.g002
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antibody evasion. Therefore, L455F further enhances the NAb evasion of XBB.1.5+F456L vari-

ants, which may contribute to the growth advantage of the “FLip” mutants. These findings

indicate that L455F and F456L complement each other to achieve maximum capability of

escaping NAbs, despite their both linear and spatial adjacency on the RBD.

L455F, F456L, and their combination specifically escape the majority of

Class 1 NAbs

As residues 455 and 456 on RBD are mainly recognized by Class 1 antibodies, which is also

referred to as “Group A1/A2” in our previous study, we tested the pseudovirus-neutralizing

activities of a panel of XBB.1.5-effective RBD-targeting monoclonal NAbs against these newly-

emerged XBB subvariants, which were isolated in previous studies [9,18] (S2 Fig). The selected

mAbs are expected to target L455/F456 as determined by deep mutational scanning (DMS)

(Fig 3A). Mutations on L455 and F456 exhibit correlated but distinct capability of escaping

these NAbs (Figs 3B and S3). Group A1 NAbs generally utilize IGHV3-53/3-66 and can cross-

neutralize the early D614G (B.1) strain, while Group A2 NAbs are usually specific to Omicron

lineages (S4A Fig) [18]. Consequently, L455F and F456L single substitution escape 11 and 8

out of 34 Group A1/A2 NAbs, respectively. Their combination exhibits stronger evasion,

against which only 8 NAbs remain effective. Notably, 11 NAbs were not completely escaped by

either L455F or F456L (IC50 < 1 μg/mL against both mutants), but escaped by the combina-

tion, indicating the synergy of the two mutations (Figs 3C and S4B). We also evaluated the

activity of neutralizing mAbs reported as drug candidates, including three that had been

approved for emergency use. Two of three tested Class 1 NAbs, BD57-0129 and Omi-42, were

partially evaded by L455F and L455F+F456L, while BD56-1854 remains potent [26]. The activ-

ity of Class 3 antibody S309 (Sotrovimab) is not substantially affected, remaining weak neutral-

ization [27]. As expected, SD1-targeting antibody S3H3, and our previously reported Class 1/4

(Group F3) RBD-targeting therapeutic neutralizing antibody SA55 remain potent against all

tested XBB subvariants, given that the mutated residues in the variants are not directly recog-

nized by SA55 and S3H3 (Fig 3D) [28,29].

Epistatic interactions of L455F and F456L on receptor binding affinity

The above results demonstrate that both the L455F and F456L mutations can confer significant

resistance to neutralization by convalescent plasma, primarily mediated by escaping Class 1

NAbs. However, it remains unclear why, during natural evolution, various lineages consis-

tently evolve F456L independently, followed by subsequent occurrence of the L455F mutation,

while cases where L455F is acquired first are rarely observed. Due to the fact that residues 455–

456 are also located on the RBM of RBD, we hypothesize that the effects of the L455F and

F456L combination originate from their impact on the affinity to the cell surface receptor for

virus entry, human ACE2 (hACE2). Previous DMS data have indicated that individual substi-

tutions, L455F or F456L, both lead to a substantial decrease in hACE2 affinity within the BA.2

background [30]. However, as the combination of these two mutations essentially results in an

adjacent residue flipping, there might be a local compensatory effect on hACE2 binding. The

significant antigenic shift from BA.2 to XBB.1.5 may also alter the impacts of the two muta-

tions on receptor binding. To validate the hypothesis, we constructed recombinant RBD sub-

units of XBB.1.5, XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L (“FLip”), and

determined their binding affinities to hACE2 by surface plasmon resonance (SPR) assays. The

dissociation equilibrium constants (KD) demonstrate 6.4 nM, 25 nM, 11 nM, and 2.0 nM for

the four mutants, respectively (Fig 4A). Consistent with DMS results, L455F significantly

dampens hACE2-binding affinity of XBB.1.5 RBD, and F456L also slightly weakens the
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binding to hACE2. Surprisingly, although neither of the two mutations increases hACE2 affin-

ity alone, their combination XBB.1.5+L455F+F456L exhibits significantly higher affinity than

XBB.1.5. As for the kinetics, L455F or F456L alone does not largely affect the association

kinetic constant (ka), but L455F greatly fastens the dissociation (kd) (S5 Fig). In contrast,

“FLip” not only rescues the accelerated dissociation, but also facilitates association, synergisti-

cally improving the receptor binding at both thermodynamic and kinetic levels (Figs 4B

and S5).
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Structural basis of the enhanced ACE2-binding affinity and antibody

evasion in “FLip” variants

To elucidate the disparities in binding affinity between XBB.1.5, XBB.1.5+F456L, and XBB.1.5

+L455F+F456L (“FLip”) spike proteins with ACE2, we determined the structures of these

three spike proteins individually in complex with hACE2 to interrogate the conformational

change on their RBD-ACE2 binding interface. As we expected, all three spike trimers showed

two ‘RBD-open’ and one ‘RBD-closed’ conformations similarly (Fig 5A). To further reveal the

impacts of mutations of residues 455 and 456 on the interface, we determined the high-resolu-

tion structures of these three variants’ RBD in complex with ACE2 at resolution of 3.3 Å, 3.0

Å, and 3.0 Å, respectively (Fig 5B). With an unambiguous electron density observed, reliable

analyses of the interaction interface can be performed (S6 Fig).

Compared to XBB.1.5, F456L mutation does not substantially affect the interactions on the

RBD-ACE2 interface. Although the side chain size of leucine is smaller than phenylalanine,

which should slightly weaken the hydrophobic packing, the packing among RBD-L455,

RBD-F456, RBD-Y489, and ACE2-F28/D30/K31 is largely kept in L456 mutant, which is in

line with the slightly reduced ACE2-binding affinity of F456L (Figs 5C and S7). In the case of

“FLip” (L455F+F456L), the F455 manifests a distinct side-chain orientation and conformation

compared to L455 (Fig 5D). This unique pattern confers more flexible space for Q493 on RBD

and the H34 on ACE2, hence enabling insertion of H34 side chain between RBD Q493 and

S494, which cannot be realized in XBB.1.5 or XBB.1.5+F456L, due to potential clash between

L455 and Q493 in this conformation (Fig 5E). Consequently, two additional hydrogen bonds,

H34-Q493 (3.57 Å) and H34-S494 (2.57 Å), are introduced, enhancing the affinity of “FLip”
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Fig 4. “FLip” but not L455F or F456L alone enhances ACE2 binding affinity. (A) ACE2-binding affinities of SARS-CoV-2 XBB subvariant

RBD determined by SPR. Mean KD values are annotated above the bars. Each point represents a replicate. Data from all replicates are shown.

SPR assays are performed in at least two independent replicates. (B) SPR sensorgrams from experiments on hACE2-binding affinity of XBB.1.5,

XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L RBD. Representative results from at least two replicates are shown. Geometric

mean values of ka, kd, and KD over replicates are labeled on each sensorgram.

https://doi.org/10.1371/journal.ppat.1011868.g004
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RBD to ACE2 (Fig 5D). In contrast, the distances between Q493 and H34 in XBB.1.5 and

XBB.1.5+F456L are only 4.78 Å and 4.86 Å, respectively, indicating very weak interactions (Fig

5C). Further analysis concludes that F456L is a prerequisite for the fitness of “FLip”. Superim-

position of F456 onto “FLip” RBD could form pronounced steric clashes between F455 and

F456, thereby disturbing the binding mode of “FLip” RBD-ACE2 interface (Fig 5E). Above all,

the flip of L455 and F456 lead to synergistic effect of residues around and reorganize the inter-

face between “FLip” RBD and ACE2 so that enhanced binding affinity can be obtained.

In parallel, to investigate the mechanism of L455F/F456L capability of escaping Class 1

NAbs, we conducted an analysis of the impact of the “FLip” mutation on the alteration of the

Fig 5. Cryo-EM structure of XBB.1.5 Spike harboring L455F/F456L in complex with ACE2. (A) Overall structure of XBB.1.5, XBB.1.5+F456L and XBB.1.5

+L455F+F456L (“FLip”) prefusion-stablized spike glycoprotein in complex with human ACE2. (B) Aligned structure of XBB.1.5, XBB.1.5+F456L and XBB.1.5

+L455F+F456L RBD in complex with ACE2 after local refinement. Green, yellow and blue cartoons represent XBB.1.5, XBB.1.5+F456L and XBB.1.5+L455F

+F456L RBD respectively, color pink represents ACE2. Two key mutated sites (455 and 456) are marked as magenta balls. (C) Comparison of the interfaces

around site 455 and 456 of the XBB.1.5 RBD-ACE2 and XBB.1.5+F456L RBD-ACE2 complexes. (D) Interface around site 455 and 456 of the “FLip”

RBD-ACE2 complex exhibits substantial conformational changes. Contacting residues are shown as sticks. Distance between atoms are shown as yellow dotted

line. (E) Superposition of ACE2-binding interface structures of “FLip” with XBB.1.5 and XBB.1.5+F456L. Potential clash that limits the interface conformation

in “FLip” is shown in yellow circles.

https://doi.org/10.1371/journal.ppat.1011868.g005
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neutralizing activity of NAb Omi-42, which efficiently neutralizes XBB.1.5 but not “FLip” vari-

ants [26,31,32]. Published structural models of Omi-42 in complex of Beta Spike (PDB:7ZR7)

revealed that residues 455 and 456 are critically recognized by its heavy chain (Fig 6A). The

superimposition of three RBDs onto the structure of mAb Omi-42 in complex with Beta RBD

reveals a slight reduction in the hydrophobic patch of XBB.1.5+F456L, while Y110 of Omi-42

CDR-H3 cannot be accessible to engage in hydrophobic interaction in “FLip” RBD, resulting

in a weaker interaction, consistent with the previous conclusion (Fig 6B and 6D). Notably, dif-

ferent Class 1 NAbs could exhibit significantly distinct interaction patterns between RBD,

especially L455/F456 region, since this region is generally targeted by the highly variable

CDR-H3 loop of most Class 1 NAbs, especially the public IGHV3-53/3-66 antibodies

[16,17,33].

Discussion

In this study, we evaluated the impacts of L455F and F456L, two frequently emerging adjacent

mutations that convergently occur in multiple XBB sublineages, on antibody neutralization

and receptor binding. We demonstrate that L455F further evades Class 1 NAbs on the XBB.1.5

+F456L basis, while single F456L or L455F substitution dampens ACE2 binding. Surprisingly,

their combination, which is exactly a “FLip”, i.e. “Leu-Phe” to “Phe-Leu” flipping, between

adjacent residues on the ACE2 binding interface, dramatically enhances affinity to ACE2.

Fig 6. Class 1 NAbs failed to mimic ACE2 binding mode. (A) Footprint of Omi-42 heavy chain (red), light chain

(orange), and ACE2 (purple contours) on the surface of RBD. (B-D) Superimposition of Omi-42 structure in complex with

Beta RBD (PDB: 7ZR7) and structure of XBB.1.5 (B), XBB.1.5+F456L (C), or “FLip” (D) RBD in this study. Carbon atoms

are shown as sticks, and electron density is shown in mesh. Heavy and light chain cartoons of Omi-42 are shown in grayish

saffron and light purple, respectively. Colors of RBDs are the same as that in Fig 5.

https://doi.org/10.1371/journal.ppat.1011868.g006

PLOS PATHOGENS Convergent evolution of XBB RBD 455-456 synergistically enhances antibody evasion and ACE2 binding

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011868 December 20, 2023 9 / 17

https://doi.org/10.1371/journal.ppat.1011868.g006
https://doi.org/10.1371/journal.ppat.1011868


Together, these results explain the convergent evolution of XBB subvariants which evolve

F456L and L455F in succession. Epistasis is a genetic phenomenon that the effect of one muta-

tion is dependent on the presence of other mutations, resulting in non-additive impacts of

mutations on specific functions [34,35]. Epistatic effects on the fitness of several evolving epi-

demic viruses, such as influenza, have been described by experiments, including DMS [36,37].

The epistatic interaction between two early SARS-CoV-2 RBD mutations on RBD, Q498R and

N501Y has also been reported in a previous study [38]. Based on the ancestral SARS-CoV-2

RBD, Q498R alone slightly reduced ACE2 binding affinity, while a strong enhancement in

affinity is observed for Q498R based on N501Y (RBD of Alpha VOC). The epistatic shift

described here is even more striking. L455F caused strong affinity reduction on XBB.1.5, but

significantly improved the hACE2-binding affinity of XBB.1.5+F456L. Both L455 and F456 are

on the core of the RBD-hACE2 interface, forming a compact conformation with D30 and K31

on ACE2 [39]. Our structural analyses reveal that “FLip” mediates substantial conformation

change on the RBD-hACE2 binding interface, which involves the remodeling of not only 455/

456, but also Q493 on RBD and H34 on hACE2. In prior Omicron lineages, such as BA.1 and

BA.2, the substitution of glutamine (Q) with arginine (R) at residue 493 on RBD significantly

diminished ACE2 affinity [9,40]. A recent DMS study demonstrated that F456L is much more

deleterious to ACE2 binding on R493 backbone (BA.1/BA.2) than Q493 backbone (XBB.1.5)

[41]. Our structural analyses show that in the Q493 background (XBB.1.5), F456L provides a

space for insertion of the side chain of K31 into the RBD, consequently introducing a hydro-

gen bond between K31 of ACE2 and backbone of S490 of RBD to compensate for the damp-

ened hydrophobic packing, which cannot be achieved in the background of R493 (BA.2) due

to the steric clash between ACE2-K31 and RBD-R493, making the co-occurrence of F456L

and R493 deleterious (S7B Fig). It would be intriguing to investigate whether the "FLip" further

accentuates the role of Q493, potentially resulting in further epistatic effects.

ACE2 mimicry has been considered to be a useful strategy for identifying and designing

broad-spectrum SARS-CoV-2-neutralizing binders and antibodies [42,43]. Class 1 NAbs, such

as Omi-42, usually interact with RBD L455/F456 with heavy chain CDR3 in a distinct way

compared to ACE2, despite the partially overlapped footprints on RBD (Fig 6A and 6B) [26].

Similarly, most XBB.1.5-effective Class 1 NAbs failed to mimic the binding mode of ACE2 and

escaped by the XBB.1.5+L455F+F456L “FLip” mutants. The emergence of L455F+F456L indi-

cates that such receptor mimicry could be extremely difficult. To achieve the goal that mutants

escaping the neutralizer also lose affinity to the receptor, the binder should not only target the

same residues as those targeted by the receptor, but also mimic the binding mode of the recep-

tor. To further investigate and explain such phenomenon, detailed analyses of the impacts

these two mutations on other RBD background, particular for the variants with distinct antige-

nicity compared to XBB subvariants, such as BA.2.86, should be carefully evaluated in the

future.

Overall, our work rationalized the emergence and circulation of XBB sublineages with

F456L followed by L455F mutation, and highlighted the enhanced receptor-binding affinity

and neutralizing antibody escape, which may lead to higher transmissibility and risk of break-

through infection and reinfection. Considering the continuously increasing proportion of

these variants, the efficacy of developing NAb drugs and vaccines against them should be care-

fully evaluated. Epistasis could substantially extend the possibility of accumulating mutations

for SARS-CoV-2 RBD, leading to novel mutants with extremely high capability of escaping

NAbs without great compromise on infectivity. Indeed, some additional immune-evasive

mutations, including A475V, is convergently emerging on the basis of “FLip” strains. The evo-

lutionary potential of SARS-CoV-2 RBD is still high, and should not be underestimated.
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Ethics statement

Blood samples from convalescent patients who had recovered from SARS-CoV-2 Omicron

BTI or reinfection were obtained under the study protocols approved by Beijing Ditan Hospi-

tal, Capital Medical University (Ethics committee archiving No. LL-2021-024-02) and the

Tianjin Municipal Health Commission, and the Ethics Committee of Tianjin First Central

Hospital (Ethics committee archiving No. 2022N045KY) (S1 Table). Written informed con-

sent, for the collection of information, storage and use of blood samples for research and data

publication, was obtained from each participant.

Materials and methods

Patient recruitment and plasma isolation

The infections of patients in the BA.5 or BF.7 BTI cohort were confirmed between July and

October 2022, during the “zero COVID” period in China. These infections were confirmed by

PCR, and the viral strains of the majority of them were determined sequencing. Other samples

which were not sequenced also showed strong epidemiological correlations with the sequenced

samples.

Patients in the reinfection cohorts experienced first infections in December 2022 in Beijing

and Tianjin. At that time, these regions were predominantly undergoing the BA.5/BF.7 wave

[44]. Among the sequences from samples collected between 12/01/2022-02/01/2023, >98% of

them were designated as BA.5* (excluding BQ*). Specifically, the major subtypes circulating in

China at that time were BA.5.2.48* and BF.7.14*, which do not have additional mutations on

RBD, and thus can be generally considered as BA.5/BF.7 (https://cov-spectrum.org/explore/

China/AllSamples/from%3D2022-12-01%26to%3D2023-02-01/variants?&). Infections of

patients in the XBB BTI and the second infections of patients in the reinfection cohorts were

between May and June 2023, when >90% of uploaded sequences in Beijing were designated as

XBB variants, and>85% were XBB* with S486P variants (https://cov-spectrum.org/explore/

China/AllSamples/from%3D2023-05-01%26to%3D2023-06-15/variants?

nextcladePangoLineage=XBB*&). These infections were confirmed via PCR test or antigen

test.

Whole blood samples were diluted 1:1 with PBS+2% FBS and then subjected to Ficoll

(Cytiva, 17-1440-03) gradient centrifugation. After centrifugation, plasma was collected from

the upper layer. Plasma samples were aliquoted and stored at −20 ˚C or less and were heat-

inactivated before experiments.

Pseudovirus neutralization assay

SARS-CoV-2 variants Spike pseudovirus was prepared based on a vesicular stomatitis virus

(VSV) pseudovirus packaging system. Variants’ spike plasmid is constructed into pcDNA3.1

vector. G*ΔG-VSV virus (VSV G pseudotyped virus, Kerafast) and spike protein plasmid were

transfected to 293T cells (American Type Culture Collection [ATCC], CRL-3216). After cul-

ture, the pseudovirus in the supernatant was harvested, filtered, aliquoted, and frozen at −80˚C

for further use.

Huh-7 cell line (Japanese Collection of Research Bioresources [JCRB], 0403) was used in

pseudovirus neutralization assays. Plasma samples or antibodies were serially diluted in culture

media and mixed with pseudovirus, and incubated for 1 h in a 37˚C incubator with 5% CO2.

Digested Huh-7 cells were seeded in the antibody-virus mixture. After one day of culture in

the incubator, the supernatant was discarded. D-luciferin reagent (PerkinElmer, 6066769) was

added into the plates and incubated in darkness for 2 min, and cell lysis was transferred to the
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detection plates. The luminescence value was detected with a microplate spectrophotometer

(PerkinElmer, HH3400). IC50 was determined by a four-parameter logistic regression model.

Antibody expression and purification

Antibody heavy and light chain genes were synthesized by GenScript, separately inserted into

vector plasmids (pCMV3-CH, pCMV3-CL or pCMV3-CK) by infusion (Vazyme), and co-

transfected into Expi293F cells (Thermo Fisher) using polyethylenimine transfection. The

transfected cells were cultured at 36.5˚C in 5% CO2 and 175 rpm. for 6–10 days. The expres-

sion fluid was collected and centrifuged. After centrifugation, supernatants containing mono-

clonal antibodies were purified using Protein A magnetic beads (Genscript), and the purified

samples were verified by SDS-PAGE.

Recombinant RBD expression and purification

DNA fragments that encode SARS-CoV-2 variant RBD (Spike 319–541) were codon-optimized

for human cell expression and synthesized by Genscript. His-AVI tags were added at the end of

the fragments. The fragments were then inserted into pCMV3 vector through infusion

(Vazyme). The recombination products were transformed into E. coli DH5α competent cells

(Tsingke). Colonies with the desired plasmids were confirmed by Sanger sequencing (Azenta)

and cultured for plasmid extraction (CWBIO). 293F cells were transfected with the constructed

plasmids and cultured for 6 days. Products were purified using Ni-NTA columns (Changzhou

Smart-lifesciences, SA005100) and the purified samples were verified by SDS-PAGE.

Surface plasmon resonance

SPR experiments were performed on the Biacore 8K (Cytiva). Human ACE2 with Fc tag was

immobilized onto Protein A sensor chips (Cytiva). Purified SARS-CoV-2 variant RBDs were

prepared in serial dilutions (6.25, 12.5, 25, 50, and 100nM) and injected over the sensor chips.

The response units were recorded by Biacore 8K Evaluation Software 3.0 (Cytiva) at room

temperature, and the raw data curves were fitted to a 1:1 binding model using Biacore 8K Eval-

uation Software 3.0 (Cytiva).

Protein expression and purification for Cryo-EM

The plasmid encoding the full-length spike (S) protein (residues 1–1208, GenBank:

MN908947) was used as the template for the construction of the S gene of of XBB.1.5 (T19I,

Δ24–26, A27S, V83A, G142D,Δ144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I,

S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, N460K, S477N,

T478K, E484A, F486P, F490S, R493Q, Q498R, N501Y, Y505H, D614G, H655Y, N679K,

P681H, N764K, D796Y, Q954H, N969K) XBB.1.5.10 (XBB.1.5+F456L) (T19I,Δ24–26, A27S,

V83A, G142D,Δ144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P,

S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, L455F, N460K, S477N, T478K,

E484A, F486P, F490S, R493Q, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H,

N764K, D796Y, Q954H, N969K) and XBB.1.5.70 (XBB.1.5+L455F+F456L) (T19I,Δ24–26,

A27S, V83A, G142D,Δ144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F,

S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, L455F, F456L, N460K,

S477N, T478K, E484A, F486P, F490S, R493Q, Q498R, N501Y, Y505H, D614G, H655Y,

N679K, P681H, N764K, D796Y, Q954H, N969K) by overlapping PCR. All the RBDs are con-

structed from the S gene plasmids. The S gene was constructed into the vector pCAGGS with a

T4 fibritin trimerization motif, a HRV3C protease site and a Twin-Strep-tag at the C terminus
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and was mutated as previously described [45]. To obtain the protein, the expression vector was

transiently transfected into HEK293F cells grown in suspension at 37˚C in a rotating, humidi-

fied incubator supplied with 8% CO2 and maintained at 130 rpm. After incubation for 72h, the

supernatant was harvested, concentrated, and exchanged into the binding buffer by tangential

flow filtration cassette. The S proteins were then separated by chromatography using resin

attached with streptavidin and further purified by size exclusion chromatography using a

Superose 6 10/300(GE Healthcare) in 20 mM Tris, 200mM NaCl, pH8.0.

Cryo-EM sample collection, data acquisition and structure determination

The cryo-EM samples of S trimers in complex with ACE2 with a molar ratio of 1:4 (S protein

to ACE2) on ice to obtain S-ACE2-complex. Then, the complex was deposited onto the freshly

glow-discharged grids (C-flat 1.2/1.3 Au). After 6 seconds’ blotting in 100% relative humidity,

the grid was plunged into liquid ethane automatically by Vitrobot (FEI). Movies (32 frames,

each 0.2 s, total dose of 60 e-Å-2) were recorded using a K3 Summit direct detector with a

defocus range between 1.5–2.7 μm. Automated single particle data acquisition was carried out

by SerialEM, with a calibrated magnification of 75,000, yielding a final pixel size of 1.07 Å. A

total of 7721, 3627 and 3040 micrographs for XBB.1.5, XBB.1.5.10 (XBB.1.5+F456L) and

XBB.1.5.70 (XBB.1.5+L455F+F456L) S trimers mixed with ACE2 were collected. cryoSPARC

was used to correct beam induced motion and average frames. Then, the defocus value of each

micrograph was estimated by patch CTF estimation. 2231681, 607934, 981307 particles of

XBB.1.5, XBB.1.5.10 and XBB.1.5.70 S-ACE2 complexes were autopicked and extracted for

further 2D classification and hetero-refinement. After that, 541205, 206061, 175934 particles

of XBB.1.5, XBB.1.5.10 and XBB.1.5.70 S-ACE2 complexes were used for homo-refinement in

cryoSPARC for the final cryo-EM density.

To improve the resolution of the binding surface of RBD-ACE2 resolution, the cryo-EM

samples of three RBDs in complex with ACE2 were also deposited in the same way, with an

Fab SN1600 added. The cryo-EM samples of RBDs in complex with ACE2 and SN1600 were

mixed in a molar ratio of 1:1.2:1.2 (RDB: ACE2: SN1600). Movies (32 frames, each 0.2 s, total

dose of 60 e-Å-2) were recorded using a Falcon 4 Summit direct detector with a defocus range

between 1.5–2.7 μm. Automated single particle data acquisition was carried out by EPU, with

a calibrated magnification of 96,000, yielding a final pixel size of 0.808 Å. A total of 7135, 7106

and 8159 micrographs for XBB.1.5, XBB.1.5.10 and XBB.1.5.70 RBD mixed with ACE2 and

SN1600 complexes were collected. cryoSPARC was used to correct beam induced motion and

average frames. Then, the defocus value of each micrograph was estimated by patch CTF esti-

mation. 989244, 1542948, 4207904 particles of XBB.1.5, XBB.1.5.10 and XBB.1.5.70 RBD-A-

CE2-SN1600 complexes were autopicked and extracted for further 2D classification and

hetero-refinement. After that, 989244, 441463, 345756 particles of XBB.1.5, XBB.1.5.10 and

XBB.1.5.70 RBD-ACE2-SN1600 complexes were used for homo-refinement in cryoSPARC for

the final cryo-EM density.

The resolutions were evaluated on the basis of the gold-standard Fourier shell correction

(threshold = 0.143) and evaluated by ResMap. All dataset processing workflows are shown in

S6 Fig.

Structural model fitting and refinement

The atom models of the complex were first fitting the chain of the apo (PDB: 7XNQ) and Fab

(heavy chain: 7E5Y, light chain: 7RU3) into the obtained cryo-EM density by Chimera. Then

the structure was manually adjusted and corrected according to the protein sequences and

density in Coot, real-space refinement was performed by Phenix.
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Supporting information

S1 Table. Information of SARS-CoV-2 patients involved in the study.

(XLSX)

S1 Fig. BA.5 or BF.7 BTI does not elicit strong neutralization against new variants. 50%

neutralization titers against SARS-CoV-2 variants of convalescent plasma from individuals

who received triple doses of CoronaVac and breakthrough-infected by BA.5 or BF.7 (66 sam-

ples). VSV-based pseudoviruses are used. Statistical significances and geometric mean titer

(GMT) fold-changes are labeled in comparison with neutralization against XBB.1.5+F456L

(the first line) and D614G (the second line). Two-tailed Wilcoxon signed-rank tests of paired

samples are used. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001; NS, not significant

(p>0.05).

(PDF)

S2 Fig. Information of XBB.1.5-neutralizing Class 1 mAbs involved in the study. The anti-

body names, source cohorts, VDJ genes utilization, somatic hypermutation (SHM) ratio, and

CDR lengths are shown in the table. Antibodies with the public IGHV3-53/3-66 heavy chain V

genes are marked in blue background.

(PDF)

S3 Fig. L455F and F456L show correlated but distinct evasion patterns against mAbs in the

DMS dataset. Paired correlation plots show the pairwise relationship between the escape score

of L455F/F456L and total escape scores on 455/456. Antibodies are split into two groups

according to their total escape scores on 455/456 as described in Fig 3B.

(PDF)

S4 Fig. Neutralization activities of Class 1 NAbs against variant pseudoviruses. (A) IC50

(μg/mL) against D614G, XBB.1.5, XBB.1.5+F456L, XBB.1.5+L455F, and “FLip” (XBB.1.5

+L455F+F456L) pseudoviruses using selected XBB.1.5-effective Class 1 monoclonal NAbs. (B)

Fold changes of IC50 values compared to IC50 against XBB.1.5 pseudovirus for the Class 1

NAbs. “/” indicates complete escape by the mutant.

(PDF)

S5 Fig. Kinetic parameters for RBD-ACE2 binding from SPR assays. Association (A) and

dissociation (B) constants of the binding kinetics between XBB variants RBD and hACE2

determined by SPR. Each dot indicates one independent SPR measurement. Geometric mean

values are shown as bars.

(PDF)

S6 Fig. Workflow for cryo-EM structural models. Workflow to generate refined structural

model of XBB.1.5 Spike, XBB.1.5+F456L (XBB.1.5.10) Spike, XBB.1.5+L455F+F456L

(XBB.1.5.70) Spike, XBB.1.5 RBD, XBB.1.5.10 RBD and XBB.1.5.70 RBD in complex of ACE2.

(PDF)

S7 Fig. F456L remodels the interaction between RBD and ACE2. (A) The electron density of

XBB.1.5 and XBB.1.5+F456L RBD-ACE2 complex around site 455 and 456 in detail, carbon

atoms are shown as sticks, density is shown in mesh, and the color scheme is the same as that

in Fig 5C. (B) Superimposition of BA.2 RBD-ACE2 (PDB:7ZF7) and XBB.1.5+F456L

RBD-ACE2 complex structure. Hydrogen bonds are shown as yellow dashed lines. Potential

steric clash is shown in yellow circles.

(PDF)
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