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Virological and 
antigenic characteristics 
of SARS-CoV-2 variants 
LF.7.2.1, NP.1, and LP.8.1
Recently, XEC and KP.3.1.1 have 
surpassed KP.3 to become the 
globally dominant lineages of SARS-
CoV-2 due to the unique N-terminal 
domain (NTD) mutations, including 
Ser31del in KP.3.1.1 and Thr22Asn 
and Phe59Ser in XEC.1–7 However, 
several sublineages of JN.1 are 
increasingly out-competing XEC and 
KP.3.1.1, exhibiting superior growth 
advantages; for example, LF.7.2.1, 
MC.10.1, NP.1, and, most importantly, 
LP.8.1 (figure A, B). Notably, LF.7.2.1 
contains an additional Ala475Val 
mutation compared with LF.7, which 
carries the Ser31Pro, Lys182Arg, 
Arg190Ser, and Lys444Arg mutations 

on spike, and has rapidly spread from 
Qatar to the Middle East and Europe. 
MC.10.1, a KP.3.1.1 subvariant with 
a rare spike mutation, Ala435Ser, 
shows a slightly higher growth 
advantage than KP.3.1.1. NP.1, which 
has an additional Ser446Asn relative 
to MC.10.1 on the receptor-binding 
domain (RBD), exhibits enhanced 
growth advantage and has spread 
rapidly in Canada. LP.8, a subvariant 
of KP.1.1, carries Ser31del, Phe186Leu, 
Gln493Glu, and His445Arg on 
spike. Importantly, LP.8.1, with an 
additional Arg190Ser, has surged 
rapidly in the USA, exhibiting the 
highest growth advantage among 
circulating variants (figure B). These 
novel RBD and NTD mutations have 
given rise to fast-evolving variants, 
underscoring the urgent need to 
evaluate their virological and antigenic 
characteristics for future preparedness.

We first constructed the recombinant 
RBD subunit of KP.3, LF.7, LF.7.2.1, 
MC.10.1, NP.1, and LP.8.1 and assessed 
their binding affinity to human ACE2 
(hACE2) using surface plasmon 
resonance (SPR; figure C). The results 
show that the Ala475Val mutation 
in LF.7.2.1 greatly reduced RBD–ACE2 
binding affinity compared with LF.7. 
In contrast, the binding affinities of 
NP.1 and LP.8.1, carrying Ser446Asn 
and His445Arg, respectively, did not 
exhibit substantial changes or only a 
slight decrease compared with KP.3. 
Given that RBD–ACE2 binding affinity 
alone does not fully reflect the effect of 
mutations on other regions or the spike 
trimer conformation, we constructed 
spike-pseudotyped vesicular stomatitis 
virus and assayed the efficiency of 
soluble hACE2 to inhibit viral entry, 
which indicates the ACE2 binding 
strength and receptor engagement 
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(figure E, F; appendix p 9). The plasma 
used in this study was obtained 
from two cohorts of individuals 
who received two or three doses of 
inactivated SARS-CoV-2 vaccines and 
subsequently experienced BA.5 or 
BF.7 breakthrough infections, with 
one cohort reinfected by JN.1 (n=29) 
and the other by JN.1 or XDV with 
Phe456Leu (n=21; appendix p 8), 
as previously described.1 Compared 
with XEC, LF.7 showed similar or 
slightly reduced plasma immune 

with KP.3.1.1, but not that of the RBD, 
suggesting Ala435Ser might impact 
ACE2 engagement through altering 
RBD conformation. Most importantly, 
the mutations in LP.8.1 enhanced its 
spike’s ACE2 binding strength to a level 
similar to KP.3, potentially contributing 
to its highest growth advantage.

Next, we evaluated the humoral 
immune evasion by using convalescent 
plasma and a panel of RBD-targeting 
neutralising monoclonal antibodies 
in pseudovirus neutralisation assays 

efficiency of the variants spike proteins 
(figure D). Consistent with previous 
findings, mutations on the NTD of 
KP.3.1.1 and XEC decreased the hACE2 
inhibition efficiency compared with 
KP.3.1–4 In concordance with the SPR 
results, the Ala475Val mutation in 
LF.7.2.1 also greatly reduced the hACE2 
inhibition efficiency compared with 
LF.7. Surprisingly, we found that the 
Ala435Ser mutation significantly 
reduced the ACE2 binding strength in 
MC.10.1 and NP.1’s spike compared 

Figure: ACE2 engagement and antibody evasion characteristics of LF.7.2.1, MC.10.1, NP.1, and LP.8.1
(A) The evolution of the spike glycoprotein in prevalent SARS-CoV-2 variants. The mutations in red are specific to these variants, in addition to those shared with 
KP.3.1.1 and XEC. (B) The relative growth advantage of XEC, LF.7, LF.7.2.1, MC.10.1, NP.1, LP.8, and LP.8.1, compared with KP.3.1.1*. The relative growth advantage was 
calculated from daily sequence data sourced from the Global Initiative on Sharing All Influenza Data database, including sequences obtained globally from Jan 1 to 
Dec 9, 2024. The growth advantage was estimated with a generation time of 7 days and confidence intervals at α=0·95. The asterisk indicates all sublineages. (C) The 
binding affinity of KP.3/XEC, LF.7, LF.7.2.1, MC.10.1, NP.1, and LP.8.1 RBD proteins to human ACE2, established by SPR. Each circle indicates a technical replicate. 
Geometric mean KD values (nM) are displayed. Log-transformed data were analysed using a two-tailed t test to compare the means between the two groups. (D) IC50 
values of soluble human ACE2 against KP.3, KP.3.1.1, XEC, LF.7, LF.7.2.1, MC.10.1, NP.1, and LP.8.1 pseudoviruses. Each circle indicates a technical replicate. IC50 values 
(μg/mL) are displayed. Log-transformed data were analysed using a two-tailed t test to calculate p values. (E) The NT50 of convalescent plasma from individuals 
reinfected with JN.1 after BA.5 or BF.7 breakthrough infection (n=29) and those reinfected with JN.1 or XDV with Phe456Leu after BA.5 or BF.7 breakthrough 
infection (n=21). Plasma source cohorts and the corresponding number of samples are labelled above each panel. The dashed line indicates the limit of detection 
(NT50=10). Geometric mean titers are labelled above each group, with fold changes and statistical significance indicated above the geometric mean titer labels. 
Wilcoxon rank-sum tests were used to determine p values. (F) IC50 values for a panel of monoclonal neutralising antibodies targeting RBD epitopes against KP.3.1.1, 
XEC, LF.7, LF.7.2.1, MC.10.1, NP.1, and LP.8.1 variants. The values within the table are IC50 values (µg/mL), while the background colour indicates the fold-change in IC50 
relative to KP.3.1.1. The colour gradient bar represents the magnitude of IC50 fold-change, with red indicating IC50 significantly higher than, and blue indicating lower 
than, XEC. IC50=50% inhibitory concentration. NT50=50% neutralising titer. KD=dissociation constant. SPR=surface plasmon resonance.
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and underscores the importance of 
monitoring LP.8.1, especially after its 
recent convergent acquisition of the 
Ala475Val mutation.
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evasion, whereas LF.7.2.1 significantly 
increased it, making it currently 
the most immune evasive variant. 
This enhancement is attributed 
to the Ala475Val mutation, which 
significantly strengthened resistance 
to class 1 antibodies, consistent 
with previous studies (figure F; 
appendix p 9).8–10 MC.10.1 exhibited 
higher immune evasion than KP.3.1.1, 
with the RBD mutation Ala435Ser 
reducing the neutralisation potency of 
class 1 and class 1/4 antibodies. Since 
site 435 is not located on the epitope 
of class 1 antibodies, this also suggests 
that Ala435Ser might enhance 
immune evasion by modulating RBD 
conformation, a mechanism similar 
to that of the NTD mutations in 
KP.3.1.1 and XEC. Additionally, NP.1, 
which carries an additional Ser446Asn 
when compared with MC.10.1, 
further enhanced immune evasion 
by improving its ability to escape 
class 3 antibodies. Importantly, LP.8.1 
maintained a high level of humoral 
immune evasion similar to XEC, while 
additionally escaping recognition by 
certain class 3 antibodies.

In summary, LF.7.2.1 is the most 
immune-evasive variant, but its weak 
ACE2 binding affinity explains why it 
does not exhibit the highest growth 
advantage despite its strong immune 
evasion. Similarly, MC.10.1 and NP.1 
show strong immune evasion, but 
the limited ACE2 binding strength 
of their spike restricts the growth 
advantage. Most importantly, we find 
that LP.8.1 exhibits exceptionally high 
ACE2 binding as well as high immune 
evasion, similar to XEC. The emergence 
of KP.3.1.1 and XEC involved a trade-
off, with enhanced immune evasion 
achieved at the expense of ACE2 
binding strength, thereby affecting 
their fitness. In contrast, LP.8.1 has 
found a way to preserve ACE2 binding 
similar to KP.3, while achieving 
immune evasion capabilities akin to 
XEC. These findings again highlight 
the strong trade-off between 
immune evasion and ACE2 binding 
strength in SARS-CoV-2 evolution, 
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