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Spike N354 glycosylation augments SARS-CoV-2 fitness
for human adaptation through structural plasticity
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ABSTRACT
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Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the
COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the
spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral
fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked
glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating
viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the
‘N354 pocket’ to ease restrictions of conformational transition resulting in a ‘RBD-up’ state, thereby
conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell
fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity
in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides
selective advantage in humans through multiple mechanisms.

Keywords: coronavirus glycosylation, viral fitness, adjustable infectivity, co-factor usage, viral evolution,
conformational modulator

INTRODUCTION

The ongoing coronavirus disease 2019 (COVID-19)
pandemic caused by severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2) has lasted for
several years. A number of variants with improved

tions or breakthrough infections [2,3]. However, im-
mune evasion often comes at the cost of impairment
in functionality and selection for antibody-escaping
variants as well as accumulation of near-neutral mu-
tations have led to suboptimal codon usage, thereby
fitness and immune evasion capabilities have been impacting fl-lnctionality (4]. I-TpOn bOF)sting wit.h up-
documented during the course of the pandemic dated (Omicron-based) vaccine or single Omicron
[1]. The emergence and circulation of Omicron
represents a significant antigenic distance shift in the
evolution trajectory of SARS-CoV-2 because this

variant has over 30 mutations in its spike (S). Subse-

infection, immune responses to Omicron variants
have been shown to be attenuated owing to the ‘orig-
inal antigenic sin’ (the propensity of the immune
system to preferentially use immunological memory

quently, several Omicron descendants, such as BA.2, based on a previous infection when a second slightly

BA.S, BQ.1, and XBB, have caused multiple waves of
infections globally. The successive selection of these
sublineages is primarily driven by immune pressure

different version of that foreign pathogen is en-
countered). However, repeated Omicron exposures
override ancestral SARS-CoV-2 immune imprinting,
yielding high neutralizing titers against Omicron

exerted by neutralizing antibodies present in human

sera as a result of mass vaccinations or natural infec- variants, including XBB sublineages [3]). Given the
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extent of immunity raised by repeated Omicron
exposures today, evolution of the virus by more
nuanced human adaptation to overcome immune
imprinting through strategies, such as increasing the
glycan shield, might be already under way.

The dense glycan shield consisting of 22-23 N-
glycosylation sequons per protomer is an essential
feature of SARS-CoV-2 § architecture. The glycans
have been shown to play intrinsic and extrinsic roles
in protein folding, modulating conformational acti-
vation and immune evasion [5,6]. Pathogenesis and
selective sweeps analysis reveal that the evolution of
glycosylation sites in SARS-CoV-2 § is intertwined
with adaptive mutations of the amino acid sequence
for successful cross-species transmission [7]. For
instance, loss of N-glycosylation at position 370
has been demonstrated to increase the receptor
binding domain (RBD) in the up conformation, and
thereby its exposure and accessibility for receptor
recognition, improving viral infectivity in humans
[8]. Distinct from roles played by N370 glycosy-
lation, many other glycans simply form a sugary
barrier that shields antigenic epitopes vulnerable to
neutralizing antibodies and immunogenic epitopes
capable of eliciting neutralizing antibodies. Glycan
shield density analysis reveals a strong correlation
that viruses historically classified as ‘evasion strong’
[9] had significantly elevated glycan shield densities
[10]. Consequently, sites of glycosylation are often
positively selected during viral evolution in a human
host to increase glycan shield density. These assist
the virus in evading the immune system, with im-
pacts on infectivity [11]. Therefore, acquisition of
extra glycans that presumably improves viral fitness
and adaptation in humans might have occurred over
the long course of the SARS-CoV-2 pandemic.

Phylogenetic analysis of sarbecoviruses based on
their S sequences reveals four clades: clade 1a (e.g.
SARS-CoV-1), clade 1b (e.g. SARS-CoV-2), clade 2
(e.g. Rf1), and clade 3 (e.g. BtKY72) [12], among
which coronaviruses from different clades display
distinct clade-specific sequence characteristics at
key sites shown to play roles in modulating viral
infectivity, antigenicity, and cross-species trans-
mission (Fig. S1A). In contrast to SARS-CoV-1,
which emerged in 2002, was under control in 2003
and disappeared in 2004, SARS-CoV-2 seems to
coexist with humans. After a prolonged period of
nearly-complete global dominance of XBB sub-
variants, substantially mutated lineages, designated
BA.2.86 sublineages, have quickly spread worldwide,
out-competing XBB (Fig. S1B) [13-15]. BA.2.86
sublineages contain more than 30 mutations in
the S when compared to XBB or its parental BA.2,
and some of these mutations have been rarely ob-
served in previously circulating variants (Fig. S1C)
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[13-15]. The substitution P621S is a feature of
SARS-CoV-1 variants and P681R is a fusion-
enhancing modulator contained in Delta [16]. Both
P621S and P681R have been selected in the BA.2.86
lineage (Figs S1A, S2A). The mutation K356T,
predicted to acquire glycosylation at N354 due to
the formation of a standard N-linked glycosyla-
tion site motif (NXT/S) occurred only in recently
emerging SARS-CoV-2 variants, rather than in early
SARS-CoV-2 variants and sarbecoviruses from other
clades (Figs S1A and S2A). In addition, the new
substitution of H245N in BA.2.86 yields one extra
glycan at N24S, further suggesting a gradual accu-
mulation of a glycan shield. Coincidentally, a distinct
footprint of positive selection located around a new
non-synonymous change (A1067C; K356T) within
the RBD was found through scanning over 180 000
SARS-CoV-2 genomes deposited from September
1, 2023 to January 1, 2024, indicating a selective
sweep (Fig. S1D). Details of how the acquisition of
glycosylation sites impacts the fitness of the virus
are not clearly understood.

RESULTS

N354 glycosylation modulates RBD
conformation

To explore the putative acquisition of glycosylation
at N245 and N354 in more recent variants, we deter-
mined the asymmetric cryo-EM reconstructions of
the BA.2.86 and JN.1 S-trimer at pH 7.4, to mimic
the physiological conditions at atomic resolution
(Fig. 1A, Fig. S3A, S3B, and Table S1). In con-
trast to S-trimers from most variants ranging from
WT, D614G through Alpha, Delta, Omicron to XBB
and XBB.1.5, which sample the RBD-up conforma-
tion more frequently (>50%), BA.2.86 and JN.1
S-trimers dominantly adopt a closed state with all
three RBDs in the down configuration (Fig. 1A),
similar to structural observations of VASS, a highly
attenuated SARS-CoV-2 vaccine candidate [17]. In
line with these structural observations, BA.2.86 was
previously reported to have compromised infectiv-
ity and attenuated pathogenicity in animal mod-
els [18,19]. Compared to other variants, there are
two additional glycosylation related modifications
at N24S and N354 in BA.2.86 sublineages, among
which N24S glycan lies at outermost region of each
NTD around the triangular vertices of the S-trimer
(Fig. 1B). Notably, the N354 glycan resides in a cleft
formed by the NTD and RBD from two neighboring
subunits, and establishes hydrogen bonds with T167
of NTD and with E340 of RBD, respectively, acting
like a ‘bolt’ to lock the S-trimer in an ‘RBD-down’
state (Fig. 1B and C). This is akin to roles played
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Figure 1. N354 glycosylation modulates RBD conformation. (A) Surface characterization of S-trimer of BA.2.86 and JN.1 in ‘up” and ‘closed’ conforma-
tional states. The three subunits of S protein are colored in yellow, light blue, and purple, respectively, and the N-glycans are highlighted with sticks.
(B) The glycosylation modifications at N245 and N354 in BA.2.86 sublineages are shown in detail. (C) RBD of the ‘closed’ conformation of BA.2.86
S-trimer superimposed with the XBB.1.5 S-trimer. Top view (top right) and center section (bottom right) show intersubunit contacts of BA.2.86 and
XBB.1.5 S-trimers. (D) The conformational change details between BA.2.86 (yellow) and XBB.1.5 (gray) in S1 subunit. The shift distances and directions
of NTD, RBD, and SD2 towards the 3-fold axis are labeled. (E) The role of N354 glycosylation in regulating changes in the ‘up” and ‘down’ conforma-
tional ratio of the RBD in ‘Remove N354 glycosylation’, ‘Gain N354 glycosylation” and ‘Control groups. In each group, the proportion of ‘RBD-down’
conformation are displayed with a bar chart. Blue and pink bars represent variants without and with N354 glycosylation. (F) The buried surface areas
(BSA) between RBDs of D614G, XBB.1.5, WT, BA.2.86, RaTG13, and S52 are compared. (G) A correlation plot created between the contact area between
RBD subunits and the ‘RBD-down’ rate.
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by LA, a polyunsaturated fatty acid found in RBD in
stabilizing the RBD-down state by locking the con-
formation of the S-trimer [20]. In line with this, the
N354 glycosylation confers a more compact archi-
tecture in the region formed by the three NTDs and
RBDs (Fig. 1C). When the closed S-trimers were su-
perimposed with its counterparts from XBB.1.5, the
NTD, RBD, and SD1 from BA.2.86 moved inward
to the 3-fold axis with the shift distances of 6 A, 3 A,
and 2 A, respectively (Fig. 1D), forming a tight pack-
ing between NTD and RBD.

To further verify the role of N354 glycosylation
in modulating RBD up/down disposition, four
additional modified constructs, BA.2.86-T356K,
predicted to remove glycosylation at N354, XBB.1.5-
K356T and BA.2.75-K356T, predicted to acquire
N354 glycan, together with BA.2.86-ins483V as
a control, were characterized, and their structural
features were compared with the ancestral strain
(Fig. 1E and Fig. S3C). Indeed, various factors such
as purification method, buffer conditions, and cryo-
EM sample preparation may, to some extent, affect
the RBD up/down ratio [21]. Thus, we performed
all assays under the same condition by using three
representative variants (BA.2.86, BA.2.75, and
XBB.1.5) with strict controls (loss and gain of N354
glycan). We observed that N354 glycosylation dra-
matically increased the proportion of the ‘closed’
form from 19% to 79% in BA.2.86, 50% to 75% in
BA.2.75, and 45% to 90% in XBB.1.5, making the
‘closed’ form the dominant population (Fig. 1E).
However, the insertion of V483 had little effect on
the modulation of the RBD conformation (Fig. 1E),
suggesting the ‘closed’ and ‘open’ form transition
was not due to the general effects of mutations in
RBD but the specific presence of N354 glycosyla-
tion. Results of our studies together with previous
studies on N-glycans at N165, N234, and N370 (not
found in all SARS-CoV-2 variants) capable of partic-
ipating in RBD up/down disposition [5,8], allows
us to propose a detailed molecular basis for RBD
conformation modulation, in which compact inter-
subunit (S1/S1) arrangements relay a cascade of
interactions mediated by specific N-glycans via tight
connections with neighboring subunits or intrinsic
packing modes, facilitating the RBD-down switch
(Fig. 1F). To further decipher the relationship be-
tween inter-subunit contacts and ‘RBD-down’ rate,
we systematically analyzed the S1/S1 or RBD/RBD
or NTD-RBD/NTD-RBD interactions and calcu-
lated the ‘RBD-down’ rates of available SARS-CoV-2
S-trimer structures (n = 21), including ours in this
study. We found that contact areas between RBDs
determine the ‘RBD-down’ rate with a compelling
correlation of 0.92 (Fig. 1F and Fig. S3D). Of note,
RBD/RBD contact areas of over 400 A drive the
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S-trimer to be in the closed state only, which is a
common feature in animal derived sarbecoviruses,
such as bat RaTG13, pangolin PCoV_GX, and
BANAL-20-52. However, those sarbecoviruses are
able to bind ACE2, but with decreased infectivity
in human cells [22-24]. These results led us to hy-
pothesise that the N354 glycan, nestled between the
NTD and RBD interface, may function as a confor-
mational control element for modulating infectivity.

N354 glycosylation decreases infectivity
irrespective of comparable hACE2
binding

Given the fact that the presence of the N354-linked
glycan favors the closed state in BA.2.86 sublineages,
this presumably leads to a compromised infectivity
and attenuated pathogenicity. To verify this, we first
compared the infectivity of BA.2.86 and represen-
tative SARS-CoV-2 variants by using pseudotyped
viruses in HEK293T cells overexpressing hACE2
(293T-ACE2) or TMPRSS2 (293T-TMPRSS2)
or both hACE2 and TMPRSS2 (293T-ACE2-
TMPRSS2) and in widely used cell lines, such as
Vero, H1299, and Huh-7. Like Omicron variants,
BA.2.86 can enter cells via endosomes as well as
through TMPRSS2 but prefers ACE2-mediated
infection (Fig. S4A) in concordance with authentic
BA.2.86 infection results [25]. Overall BA.2.86
exhibited a partially decreased infectivity compared
to most Omicron variants (Fig. 2A and Fig. S44),
which largely matches with recent studies [13-15],
albeit with improved entry into lung cells rather
than other cells relative to specific variants being
observed as well [26,27]. These in vitro findings
correlate to in vivo clinical observations that cur-
rently there are no reports of elevated disease
severity associated with this variant [28]. Virus-
host receptor engagement and membrane fusion
directly affect viral infection efficiency. To further
investigate if the RBD-dynamics modulator (N354
glycosylation) and putative fusion-related muta-
tion (P621S) impact infectivity, we constructed
BA.2/XBB.1.5/BA.2.86 derivatives that bear re-
spective mutations and measured their infectivity in
293T-ACE2, Vero, and Huh-7 cells (Fig. 2B). As ex-
pected, acquisition of N354 glycosylation generated
by the K356T mutation in BA.2 and XBB.1.5 de-
creased its infectivity, and loss of N354 glycosylation
raised by the reverse mutation T356K in BA.2.86
increased its infectivity (Fig. 2B). Surprisingly, the
substitution of P621S predicted to affect fusion activ-
ity in BA.2 and XBB.1.5 contributed to the increased
infectivity; in turn the reverse substitution of S621P
in BA.2.86 resulted in further decreased infectivity
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Figure 2. N354 glycosylation decreases infectivity, but not via compromising binding to hACEZ. (A) Relative infectivity of XBB.1.5, D614G, Delta BA.1,
BA.2, EG.5.1, BA.2.86, and JN.1. Vesicular stomatitis virus-based pseudoviruses were used to test the efficiency of infecting 293T-ACE2, Vero, and
Huh-7 cells. Error bars represent the mean £ SD of three replicates. All raw data of infectivity are normalized by XBB.1.5. (B) Relative infectivity of
BA.2, XBB.1.5, and BA.2.86 variants with mutations at positions 356 and 621, compared to their respective wild types, evaluated in 293T-ACE2, Vero,
and Huh-7 cells. Error bars represent the mean =+ SD of three replicates. (C) The impact of glycosylation at position 354 of BA.2.86, BA.2.75, and
XBB.1.5 RBDs on the binding affinity to hACE2 assessed by SPR. (D) Surface characterization of two ‘up’ RBD conformations of BA.2.86 S-trimer binding
to hACE2 determined by cryo-EM. The color scheme for three subunits of S are consistent with Fig. 1A and hACEZ is colored in pink. (E) Changes in
affinity of binding hACE2 from early SARS-CoV-2 variants of concern (VOCs) and Omicron variants to late Omicron variants. (F) The effect of a single
substitution on the binding affinity to hACE2 was assessed using SPR. Mutations that greatly enhance, moderately enhance, and decrease the affinity
to hACEZ are indicated in red, light purple, and yellow, respectively. The cutoff value of greatly increasing affinity is set as a 3-fold change in Kp value
relative to BA.2.86. (G) Evaluation of binding affinity to hACE2 of the variants with 1-2 mutations on the RBM of BA.2.86 by SPR. These variants are
based on predictions of increased binding affinity to hACE2.

(Fig. 2B). Coincidentally, the N354 glycosylation
(K356T mutation) first emerged in BA.2.75.5 and
then in XBB.1.5.44, but they did not display growth
advantages compared to the prevalent variants, pre-
sumably due to the dramatically reduced infectivity
(Fig. S2A). S621P to a large extent compensated
the decreased infectivity conferred by the N354
glycosylation.

We next sought to examine the possibility that
the N354 glycosylation mediated impaired infec-
tivity may be related to decreased binding affinity
to hACE2. For this, three paired groups of six vari-
ants (BA.2.75/BA.2.75.5; XBB.1.5/XBB.1.5.44;
BA.2.86/BA.2.86-T356K) were carefully selected
due to the only difference being the presence of
N354 glycosylation or not in their RBDs. Surface
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plasmon resonance (SPR) results demonstrated
that RBDs with or without the N354 glycosylation
showed comparable binding affinities to hACE2,
indicating that the N354 glycosylation does not
impact hACE2 binding (Fig. 2C). Moreover, the
binding affinities of the BA.2.86 S-trimers with or
without the N354 glycosylation for hACE2 yielded
similar results (Fig. S4E), despite N354 glycosy-
lation promoting the S-trimer ‘RBD-down’ state.
To further structurally verify this, we determined
the cryo-EM structure of the BA.2.86 S-trimer
in complex with hACE2 (Fig. 2D, Fig. S4B, and
Table S1). Like most complex structures, one or two
copies of hACE2 are bound to the RBDs in the up
configuration (Fig. 2D). Consistent with binding
results, both the N354 glycan and T356 are located
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far away from the interface (Fig. S4C). However,
we noted that variants with the N354 glycosylation
exhibited very high affinities to hACE2, reflecting
that tight binding might be required to further
recover the compromised infectivity (Fig. 2E). To
further explore the contribution on hACE2 tight
binding exemplified by BA.2.86, we evaluated the
individual substitution (including reverse muta-
tion) of N354Q, T356K, K403R, D450N, H445V,
W452L, L455S, K481N, ins483V, K484A, or P486F
in BA.2.86 RBD on the hACE?2 affinity. Surprisingly,
all single mutations except for L45SS identified in
JN.1 displayed, to some extent, increased binding
affinities and single reverse mutation of D4SON,
H445V, and P486F induced an ~3-fold affinity
increase (Fig. 2F). Furthermore, mutations iden-
tified in key variants were also evaluated, among
which a reverse-mutated combination of N417K
and H505Y, as well as a pair of Flip-mutations of
L4SSF and F456L synergistically enhanced hACE2
binding (Fig. 2G). Structural comparisons revealed
that the substitutions of N417K and HS0S5Y estab-
lished extra hydrogen bonds with D30 and E37 on
ACE2, and mutations, including P486F, H445V,
W452L and L455F-F456L augmented hydrophilic
interactions of the microenvironment, increasing
binding capabilities (Fig. S4D). These suggest that
successful selection for acquisition of the N354
glycosylation possibly needs to be accompanied
by tighter ACE2 binding together with the P621S
substitution, co-manipulating the infectivity.

Decreased infectivity by N354
glycosylation can be restored by HS

Viruses like influenza and coronavirus use glycans
as entry factors. In particular, the initial interac-
tion with host cells is mediated by glycans [29].
Growing evidence supports a role for negatively
charged glycans, such as heparin sulfate (HS) as
entry co-factors for SARS-CoV-2 [30]. More impor-
tantly, these entry co-factors and furin expression
are specially more abundant in nasal epithelial cells
and upper airway cells compared to those in the
lungs [31]. Perhaps correlated with this, Omicron
variants display a gradual increase in binding affinity
to HS compared to early VOCs [32], presumably
leading to a tropism alteration during SARS-CoV-2
evolution. Together with increased positive charges
(Fig. SSA) and nearly all closed S-trimers mediated
by the N354 glycosylation (Fig. 1A), these raise
a possibility of altered entry factor usage in nasal
epithelial and upper airway microenvironments. To
mimic authentic virus infection at multiple steps of
viral life cycles in nasal and upper airway tracks, we
evaluated co-factor usage efficiency in representa-
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tive variants via pre-treatment of virus-like particles
(SC2-VLPs) [33] with various concentrations of
free HS prior to infection by using 293 T-ACE2-furin
cells (Fig. 3A). We observed that free HS displayed
a dose-dependent reduced infection of BA.S,
BA.2.75, and XBB.1.5, consistent with previously
reported inhibition in S binding and infection by
authentic SARS-CoV-2 [30]. Surprisingly, HS treat-
ment dramatically increased BA.2.86 infection,
exceeding XBB.LS infectivity (Fig. 3A), which
suggests that abundant HS and furin aided the
recovery of the decreased infectivity for BA.2.86.
To further decipher the underlying mechanism, we
constructed BA.5-K356T, BA.2.75-K356T, XBB.1.5-
K356T, and BA.2.86-T356K SC2-VLPs to gain or
remove the N354 glycosylation, respectively, and
compared the effect in HS treatment with their
parental SC2-VLPs. Strikingly, all the N354 gly-
cosylated SC2-VLPs exhibited a dose-dependent
enhanced infectivity upon HS treatment, reaching
up to the infectivity level for their parental variants
and loss of the N354 glycosylation largely eliminated
the HS-induced enhanced infectivity in BA.2.86
(Fig. 3A), indicative of differential usage of HS as
a cofactor for modulating infectivity of the N354
glycosylated variants in furin/hACE2 enriched
microenvironments. This observation has recently
been reflected by experimental observations of
potent infections for BA.2.86 in nasal epithelial cells
[34]. In line with these results, the N354 glycosy-
lation partially impaired binding of HS to RBDs
(Fig. 3B). Intriguingly, HS-mediated enhancements
of infectivity for the N354 glycosylated variants
became marginal by using pseudo-typed viruses in
293T-ACE2 cells, while HS dose-dependent inhi-
bitions of infectivity for variants without the N354
glycosylation were still straightforward (Fig. SSB).
The possible reason for differences yielded from
two systems might lie in excessive redundancy of
spikes decorated on VSV-based pseudoviruses, in
which limited numbers of the ‘open’ spikes can
initialize a successful infection even though the
majority are in the closed state, largely diluting roles
played by HS in modulating infectivity of the N354
glycosylated variants via promoting the RBD-up
transition. Collectively, these revealed that HS and
furin enriched microenvironments might offset the
impaired infectivity caused by the N354 glycosyla-
tion and even possibly support the shift in tropism
towards HS-abundant cells.

To understand SARS-CoV-2 engagement of the
HS cofactor and how the N354 glycan alters HS us-
age at the molecular level, we determined cryo-EM
structures of XBB.1.5, BA.2.86, JN.1, and BA.2.86-
T356K in complex with HS at 3.2-3.8 A (Fig. 3C
and Fig. SSC). Interestingly, incubation with HS led
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to marked conformational alteration, yielding sub-
stantially increased ‘RBD-up’ state in the N354 gly-
cosylated S-trimers, but had limited impact in RBD
conformation modulation for S-trimers without the
N354 glycosylation (Fig. 3D). Due to structural het-
erogeneity and flexibility of HS, only the density for
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part of the HS basic unit, IdoA (2S) (2-O-sulfo-c-
L-iduronic acid), is clear, allowing identification of
the location of major binding sites and interactions
(Fig. 3C). In contrast to binding of sialoglycan to
the domain A (corresponding to the NTD in SARS-
CoVs) in HKU1 and MERS-CoV [35,36], HS mainly

$202 JoquianoN g0 UO Jasn AJISISAIUN [BLUION BUIYD [eliua) AQ £€/669//9029BMU// /] |/a|0IUe/ISU/wod dnooiwapeoe//:sdiy WoJ) papeojumod



Natl Sci Rev, 2024, Vol. 11, nwae206

targets a semi-open, shallow, elongated cavity com-
posed of a number of positively charged residues
on RBD, downstream within a deep groove, named
the N354 pocket, constructed by the residues N354,
R35S, K/T356, and R357 from RBD and T157 and
F168 from neighboring NTD, is occupied by the HS
fragment (Fig. 3C). The HS fragment is poised to
possibly interact with R355 and R357 through hy-
drogen bonds and a salt bridge, meanwhile residues
K356, N354, R346, and R466 might contribute to
further coordinate the oligosaccharide (Fig. 3C).
Notably, the absence of the N354 glycan in the im-
mediate vicinity of the binding groove probably facil-
itates unobstructed engagement of HS, in line with
the observed affinity; however, the presence of the
N354 glycan together with the bound HS widens
the binding groove by 3 A, pushing the neighboring
NTD outwards and thereby conferring a relatively
relaxed upper arrangement (Fig. 3E). The high pro-
portion of the ‘3-RBD-down’ state led by the N354
glycan mediated compact upper architecture could
be partially converted to the ‘RBD-up’ state upon HS
binding, which explained the experimental observa-
tion that HS treatment increased infectivity for the
N354 glycosylated variants.

N354 glycosylation affects S cleavage
and fusogenicity

We next sought to examine the possibility that the
impaired infectivity caused by the N354 glycosyla-
tion in some cells might be related to differential
S cleavage. For instance, Delta, which is known to
show higher infectivity, is associated with a highly
cleaved S protein and more efficient TMPRSS2 us-
age for entry [37]. Furin cleavage dependent on the
polybasic cleavage site (PBCS) between S1 and S2
is a key step in regulating virus infectivity and fu-
sion activity [37-39]. Alterations at P681 in PBCS
have been observed in multiple SARS-CoV-2 lin-
eages, H681 in Alpha and most Omicron variants;
R681 in Delta and BA.2.86 (Fig. 4A). To evaluate the
cleavage efficiency, we first tested the cells used for
WT, BA.2, and BA.2.86 pseudoviruses production
by western blot analysis. We found substantially im-
proved cleavage in BA.2.86 compared with BA.2 as
evidenced by the ratio of S1/S2 to full-length S, de-
spite being slightly lower than that in WT and Delta
(Fig. 4B and C), suggesting that mutation at P681
contributes non-exclusively to S cleavage. To further
investigate putative contribution on enhanced cleav-
age, we also evaluated S cleavage in BA.2.86-T356K
and BA.2.86-S621P. Interestingly, the loss of N354
glycosylation through T356K mutation decreased
cleavage efficiency and the reversion of S621P mod-
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erately increased S cleavage (Fig. 4C), indicative of
BA.2.86 S-trimers being more likely in a postfu-
sion conformation under furin enriched microenvi-
ronments. Given our data showing inefficient TM-
PRSS2 usage for BA.2.86 sublineages, N354 glycosy-
lation appears to negatively correlate between cleav-
age efficiency and infectivity (Fig. 2B and Fig. 4C).
The ability of SARS-CoV-2 S to induce cell-
cell fusion, providing an additional route for viral
dissemination and promoting immune evasion,
correlates with the PBCS, S cleavage efficiency, and
the usage of TMPRSS2 [37]. Given the requirement
of TMPRSS2 and S cleavage for optimal cell-cell
fusion, Delta displayed the highest fusion activity;
on the contrary BA.1 had quite low fusogenicity
[38,39]. We hypothesized, based on the increased
cleavage efficiency, that the fusion efficiency is al-
tered in BA.2.86 in comparison to BA.2. To examine
this, we used a split GFP system [37] to moni-
tor cell-cell fusion in real time. We observed that
BA.2.86 showed an increment in cell-cell fusion
compared to BA.2, but was still demonstrably lower
than WT and Delta (Fig. 4D). Fusion inhibitors
like EK1 showed very potent fusion inhibitory
activity against BA.2.86-S-mediated fusion [40].
The efficiency in fusion is reversely correlated with
the stabilities of S-trimers (Fig. S6A), which can be
explained by the fact that structural transitions from
the prefusion to postfusion stage involve a series
of conformational changes between domains and
subunits, a prerequisite for viral fusion. Structural
comparisons with BA.1 revealed reduced inter-
actions between domains, including NTD-RBD,
RBD-SD1/SD1-S2, and S2-S2 in BA.2.86, struc-
turally explaining compromised stability (Fig. S6B).
Not surprisingly, either the loss of the N354 glycan
or substitution R681P/H in BA.2.86 substantially
reduced the cell-cell fusion activity; on the contrary
acquisition of the N354 glycan or the mutation
H681R based on XBB.1.5 contributed to increased
fusion activity (Fig. 4E). The improved S processing
and fusion might be related to the structural observa-
tion through an allosteric mechanism that the N354
glycan tightly cements the NTD and RBD from adja-
cent subunits together presumably aiding in S1 shed-
ding, a pre-requisite step for subsequent fusogenic-
ity. As expected, the single mutation S621P based
on BA.2.86 improved the fusion activity and the
mutation P621S in XBB.1.5 dramatically decreased
its fusion efficiency (Fig. 4E). In line with functional
observations, the mutation P621S facilitates forma-
tion of an a-helix in the 630 loop, a key modulator
for fusion [1,41], that would be adopted as a partially
disordered loop in P621 variants, to some extent
structurally impeding structural rearrangements for
subsequent fusion (Fig. 4F). These data indicate that
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the N354 glycosylation coupled with P621S alters
multiple virological characteristics, in which cell-
cell fusion activity renders the N354 glycosylated
variants difficult to be neutralized by antibodies.

K356T coupled N354 glycosylation
specially escapes a subset of ADCC
antibodies

Major selective pressures for previous VOCs, such
as Delta, BA.2, BA.S, and XBB causing waves of
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infections globally, came from specific classes of an-
tibodies driving immune evasion [2]. Compared to
FLip and other XBB variants, BA.2.86 did not show
substantial humoral immune escape, while JN.1
with one additional mutation (L455S) on BA.2.86
became more immune-evasive due to extensive
resistance across three types of antibodies [42]. Pre-
viously, we determined the escape mutation profiles
and epitope distribution of a total of 3051 antibodies
isolated from vaccinated or breakthrough infection
(BTI) individuals by deep mutational scanning
(DMS), which were classified into 12 subgroups
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Figure 5. K356T coupled N354 glycosylation specially escapes a subset of ADCC antibodies. (A) t-SNE and unsupervised clustering of antibodies that
bind SARS-CoV-2 RBD. Twelve epitope groups were identified from the DMS dataset (3051 antibodies). (B) Heatmap of neutralizing activity against
XBB.1.5, XBB.1.5-K356T, BA.2.86, BA.2.86-T356K, and JN.1 of representative antibodies from 10 epitope groups, relative to BA.5. (C) Mapping of escape
scores for antibodies from epitope group E1 ('left flank’), E2.1 ("chest’), E2.2 (‘chest’), and E3 ('right flank’) on SARS-CoV-2 RBD (PDB: 6MO0J). (D) Heatmap
of ADCC effect of RBD antibodies. Four types of color bars represent the base 10 logarithm of the maximum of experiment curve, the base 10 logarithm
of the maximum of the fitting curve by four parameters fitting, the base 10 logarithm of EC50 and area under curve from Fig. S7. The antibodies with
‘grey bar’ representations were not selected to perform ADCC assays. These antibodies cannot bind to the WT RBD, but the surface antigens of the

target cell for ADCC assays are from SARS-CoV-2 WT variant.

(Fig. SA). Immune evasion pattern assays revealed
that BA.2.86 sublineages specifically escaped A2,
D3, part D4, and many E antibodies when compared
to XBB.1.5 (Fig. SB). Strikingly, acquisition of the
N354 glycosylation by the K356T substitution
largely inactivated group E1, E2.1, and E2.2 antibod-
ies, although these antibodies displayed relatively
low but broad neutralizing activities (Fig. SB and
Fig. S7A). Class E antibodies from E1 to E3 target
epitopes on the RBD ranging from left flank through
chest to right flank, and most E1, E2.1, and E2.2 an-
tibodies extensively associate with K356 and N354,
which has been validated by complex structures,
including $S309 (E1) (Fig. SC and Fig. S7B). The
mutation K356T could decrease charge/hydrophilic
interactions and the N354 glycan fatally induced
steric clashes, disabling the binding of most EI,
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E2.1, and E2.2 antibodies (Fig. S7B). Fc-dependent
effector mechanisms, e.g. antibody-dependent cell
cytotoxicity (ADCC) mediated by natural killer
cells, could facilitate viral clearance from infectious
individuals. Remarkably, we observed efficient E
antibodies-mediated ADCC of SARS-CoV-2 S-
transfected cells (Fig. SD and Fig. S7C), revealing
that the N354 glycosylated variants coupled with
K356T specially escapes one subset of ADCC
antibodies. Of note, there is one limitation that
antibodies from other classes possibly possessing
ADCC activities, were not tested here due to no
cross-reactivity to WT spikes in our ADCC system.
Together with improved cell-cell fusion, these
possibly make the N354 glycosylated variants dif-
ficult to be cleared from individuals infected with
virus.
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Figure 6. N354 glycosylation reduces immunogenicity in a hybrid immunity background. (A) Two cohorts of mice evaluating the immunogenicity of
various SARS-CoV-2 variants. One cohort consisted of non-immunized BALB/c mice that received two doses of spike proteins (BA.5, XBB.1.5, EG.5.1,
BA.2.86, BA.2.86-T356K), with a 14-day interval between each dose. The other cohort mimicked a real-world immunity background, where BALB/c mice
were immunized with an inactivated vaccine (two doses of WT + one dose of BA.5) in addition to a single dose of spike protein (BA.5, XBB.1.5, EG.5.1,
BA.2.86, BA.2.86-T356K). Blood samples were collected 14 days after immunization. The 50% neutralizing titer (NT50s) against Omicron variants (BA.5,
XBB.1.5, EG.5.1, BA.2.86, BA.2.86-T356K) in plasma from a non-immunized BALB/c mice background (B) and from BALB/c mice simulating a real-world
immune background (D). The p-values were calculated via a two-tailed Wilcoxon signed-rank test for paired samples. Radar plots of the spectrum of
neutralization and bar charts of the immunogenicity of the five types of immunogens from a single immunity background (C) and a real-world mimicry

immunity background (E).

N354 glycosylation reduces
immunogenicity in a hybrid immunity
background

In addition to immune escape, viruses generally
evolve to acquire new glycosylation sites on the pro-
tein surface, a natural phenomenon of glycan shield-
ing, which alters their glycoprotein immunogenicity
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[43]. To investigate if the N354 glycosylation may
affect its immunogenicity, we first assessed humoral
immune responses in naive (non-immunized)
BALB/c mice following two-dose primary series
immunization with variant S proteins (Fig. 6A). All
S proteins contained six proline substitutions (S6P)
and mutations in the PBCS to stabilize them in the
prefusion conformation [9]. Groups of mice (n= 10
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per group) were inoculated intramuscularly with
10 pg of variant S proteins, a widely used dosage for
immunogenic evaluations in mice [3,44], including
BA.5, XBB.15, EG.5.1, BA.2.86, and BA.2.86-
T356K, on days 0 and 14, and sera were collected
at day 28 (2 weeks after the second dose). Admin-
istration of BA.S, XBB.1.5, and EG.5.1 S proteins
exhibited very low serum 50% neutralizing titers
(NTso) against BA.2.86, BA.2.86-T356K, and JN.1
(using vesicular stomatitis virus-based pseudovirus),
meanwhile immunization of BA.2.86 and BA.2.86-
T356K resulted in quite limited neutralizing titers
against Omicron sublineages, suggesting a large
antigenic distance between Omicron and BA.2.86
from single immunity background analysis (Fig. 6B
and C). Notably, the N354 glycosylation decreased
BA.2.86 immunogenicity by ~40% in comparison
with BA.2.86-T356K, rendering BA.2.86 a relatively
lower immunogenicity among SARS-CoV-2 variants
(Fig. 6C).

To further evaluate the effects of the N354 gly-
cosylation in SARS-CoV-2 immune imprinting in-
duced by breakthrough infections, we modeled a
real-world mimicry immunity background in mice.
To accomplish this, two doses of 0.3 g Coron-
aVac (1/10 human dose, an inactivated vaccine de-
rived from WT) were used as primary immuniza-
tion, then one dose of 0.3 g inactivated BA.S
vaccine was administrated at 3.5 months after the
second dose to mimic BA.S BTI, and one dose of
10 pg variant S protein at 4 months after the third
dose was used to mimic BTI + reinfection (Fig. 6A).
Compared to single immunity background, single-
dose administration of Omicron BA.S, XBB.1.5, and
EG.5.1 S proteins under a hybrid immunity back-
ground displayed ~5-20-fold improved cross neu-
tralization against BA.2.86 sublineages and single-
dose immunization of BA.2.86 and BA.2.86-T356K
could produce ~50-200-fold increased neutraliz-
ing titers against Omicron subvariants (Fig. 6D and
E), suggesting that the existence of hybrid immune
imprinting facilitates cross-reactive B cell recall and
shortens antigenic distance. As ongoing evolution,
an intrinsic trend in gradually decreased immuno-
genicity for variant S proteins was observed and ac-
quisition of the N354 glycan further induced ~2-
fold reduction in the immunogenicity under a hybrid
immunity background, consequently conferring al-
leviated immune imprinting (Fig. 6E). Nonetheless,
aone-dose booster of BA.2.86, in particular BA.2.86-
T356K, under real-world mimicry of immunity back-
ground could elicit high levels of neutralizing an-
tibodies against BA.2.86 sublineages, including the
currently prevalent JN.1 (Fig. 6E), revealing that im-
mune responses can be fine-turned to the BA.2.86
sublineages by boosting with a tweaked (BA.2.86-
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based) vaccine. These indicate an altered evolution
trajectory towards more sophisticated adaptation in
humans through acquisition of the N354 glycan.

DISCUSSION

A selectively favorable mutation spreading all or part
of the way through the population generally causes
a decrease in the level of sequence variability at
nearby genomic sites [45], which can be manifested
as a selective sweep signature. By using OmegaPlus
and RAiSD, we mapped putative sweep regions in
184224 SARS-CoV-2 genomes deposited in the past
4 months (from September 1, 2023 to January 1,
2024) from the GISAID EpiCoV database (see Ma-
terials and Methods). Four similar selective sweep
regions were detected in the S from both datasets
regardless of whether wild type or BA.2 or BA.S
or XBB was used as a reference (Fig. S1D). Two
non-synonymous changes (A1067C and Al114G)
within the codons for residues 356 (K—T) and
372 (T—A) of RBD were centrally located in one
of the sweep regions, leading to acquisition and
loss of N354 and N370 glycosylation, respectively
(Fig. S1D). Loss of the N370 glycosylation has been
shown to be an important evolutionary event for
SARS-CoV-2 emergence from animal reservoirs and
the enhanced human-to-human transmission dur-
ing the early stages of the pandemic [7,8]. Our
findings, to some extent, suggest that the N354
glycosylation acquired by variants during the course
of the prolonged SARS-CoV-2 pandemic likely con-
fers selective advantage for optimal adaptation in
humans through a shift in tropism with adjustable in-
fectivity, reduced immunogenicity, and elimination-
escaped immune evasion.

The conformational dynamics of RBD, and
modulation thereof, would render sarbecoviruses
cunning to balance host cell attachment and immune
escape. The transition to the ‘up’ state exposures
of RBD for the binding to hACE?2 is also a prereq-
uisite for S-mediated viral fusion, directly correlat-
ing with infectivity. Thus, S proteins from most cir-
culating SARS-CoV-2 variants have been observed
in the RBD-up state with a reasonable proportion
(>50%). Remarkably, however, recently prevalent
BA.2.86 sublineages dominate their S protein in the
RBD-down state up to 100% for JN.1 due to acquisi-
tion of the N354 glycosylation, shielding RBD from
neutralizing antibodies and preventing RBD-hACE2
engagement. Surprisingly, the decreased infectivity
could be recovered by altered binding mode of HS
co-factor to promote the RBD-up conformational
transition, apparently through an allosteric mecha-
nism, conferring an adjustable infectivity and a shift
in tropism towards HS-abundant cells.
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During the process of viral evolution, viruses de-
velop different glycosylation modifications, yielding
appreciable impacts on survival, transmissibility, and
fitness. In general, the majority of N-glycan adding
mutants show decreased infectivity and transmission
efficiency [46], in turn, immune-shielding glycans
are beneficial for immune evasion, which reflects a
sophisticated and balanced evolution strategy for N-
glycan site accumulation. Further evidence for this
has been documented in the viral evolution of In-
fluenza A with additional N-glycan sites every 5-7
years [47]. Whether the limited glycan shield density
observed on SARS-CoV-1, SARS-CoV-2, and Mid-
dle East syndrome coronaviruses (MERS) is corre-
lated to the zoonosis of the pathogens is unknown.
Notably, among betacoronavirus genus, seasonal hu-
man coronaviruses HKU1 and OC43 have long co-
existed with humans and possess 26-31 N-glycan
sites per S monomer, versus 22-23 N-linked glycan
sequons in SARS- and MERS-CoVs (Fig. S2B). Re-
markably, N-glycan sites on OC43 S were accumu-
lated in the past 60 years with ~2 N-glycan sites
added every 20 years (Fig. S2C). A marginal trend
in the relationship between N-glycan sites and preva-
lent time in humans was also observed in HKU1
presumably due to its first isolation and identifica-
tion in 2004. It’s tempting to speculate that ade-
quate prevalent time might be required to monitor
the glycan shield accumulation or HKU1 evolution
to enter a relatively mature stage, bearing ~30 and
5 N-glycan sites in S monomer and RBD, respec-
tively (Fig. S2C). Even so, N-glycan modifications of
coronavirus S proteins do not constitute a bona fide
and effective shield, when compared to the glycan
density of other viruses such as HIV, influenza, and
Lassa, which may be reflected by overall structure,
sparsity, oligomannose abundance, and immune eva-
sion [48]. Although it’s difficult to directly compare
viruses in terms of immunogenic responses, SARS-
CoVs readily elicit robust neutralizing antibodies
that target S proteins following infection or immu-
nization [49,50]. In contrast, the effective glycan
shield of HIV hinders the production of sufficient
immune responses and broadly neutralizing anti-
bodies [51]. We speculated that the high plasticity of
SARS-CoV-2 spike RBD may limit the accumulation
of glycans on itself. The biological importance of the
N354 glycosylation in modulation of SARS-CoV-2
immunogenicity and immune responses may pro-
vide implications in coronavirus vaccine research.

Limitations of the study

Evaluation of virus infectivity in vitro by cell lines
may not completely reflect the true infection efhi-
ciency of the virus in vivo. Due to limitations of
Biosafety level 3 laboratories and related materials,
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studies on viral tropism and infections in primary
cells/organoids are interesting, but they are beyond
the scope of the present study. The evaluation of an-
tibody escape also faces the same situation. Although
the pseudovirus infection assay is classic and widely-
used, immunological escape is a complicated pro-
cess in vivo, requiring BSL3 laboratories and ideal an-
imal models. Additionally, the immune background
against SARS-CoV-2 for the population is very com-
plex. While mouse-based animal models cannot re-
flect the human immune imprinting situation, it is
challenging to perform related assays in humans due
to the heterogenicity of the hybrid immunity from
immunisation background and or breackthrough in-
fections.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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