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ABSTRACT 

Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the 
COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the 
spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral 
fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked 
glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating 
v iral infectiv ity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 
‘N354 pocket’ to ease restrictions of conformational transition resulting in a ‘RBD-up’ state, thereby 
conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell–cell 
fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity 
in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides 
selective advantage in humans through multiple mechanisms. 

Keywords: coronavirus glycosylation, viral fitness, adjustable infectivity, co-factor usage, viral evolution, 
conformational modulator 
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tions or breakthrough infections [2 ,3 ]. However, im- 
mune evasion often comes at the cost of impairment 
in functionality and selection for antibody-escaping 
variants as well as accumulation of near-neutral mu- 
tations have led to suboptimal codon usage, thereby 
impacting functionality [4 ]. Upon boosting with up- 
dated (Omicron-based) vaccine or single Omicron 
infection, immune responses to Omicron variants 
have been shown to be attenuated owing to the ‘orig- 
inal antigenic sin’ (the propensity of the immune 
system to preferentially use immunological memory 
based on a previous infection when a second slightly 
different version of that foreign pathogen is en- 
countered). However, repeated Omicron exposures 
override ancestral SARS-CoV-2 immune imprinting, 
yielding high neutralizing titers against Omicron 
variants, including XBB sublineages [3 ]. Given the 
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NTRODUCTION 

he ongoing coronavirus disease 2019 (COVID-19)
andemic caused by severe acute respiratory syn-
rome coronavirus-2 (SARS-CoV-2) has lasted for
everal years. A number of variants with improved
tness and immune evasion capabilities have been
ocumented during the course of the pandemic
1 ]. The emergence and circulation of Omicron
epresents a significant antigenic distance shift in the
volution trajectory of SARS-CoV-2 because this
ariant has over 30 mutations in its spike (S). Subse-
uently, several Omicron descendants, such as BA.2,
A.5, BQ.1, and XBB, have caused multiple waves of
nfections globally. The successive selection of these
ublineages is primarily driven by immune pressure
xerted by neutralizing antibodies present in human

era as a result of mass vaccinations or natural infec- 
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xtent of immunity raised by repeated Omicron
xposures today, evolution of the virus by more
uanced human adaptation to overcome immune
mprinting through strategies, such as increasing the
lycan shield, might be already under way. 
The dense glycan shield consisting of 22–23 N -

lycosylation sequons per protomer is an essential
eature of SARS-CoV-2 S architecture. The glycans
ave been shown to play intrinsic and extrinsic roles
n protein folding, modulating conformational acti-
ation and immune evasion [5 ,6 ]. Pathogenesis and
elective sweeps analysis reveal that the evolution of
lycosylation sites in SARS-CoV-2 S is intertwined
ith adaptive mutations of the amino acid sequence
or successful cross-species transmission [7 ]. For
nstance, loss of N -glycosylation at position 370
as been demonstrated to increase the receptor
inding domain (RBD) in the up conformation, and
hereby its exposure and accessibility for receptor
ecognition, improving viral infectivity in humans
8 ]. Distinct from roles played by N370 glycosy-
ation, many other glycans simply form a sugary
arrier that shields antigenic epitopes vulnerable to
eutralizing antibodies and immunogenic epitopes
apable of eliciting neutralizing antibodies. Glycan
hield density analysis reveals a strong correlation
hat viruses historically classified as ‘evasion strong’
9 ] had significantly elevated glycan shield densities
10 ]. Consequently, sites of glycosylation are often
ositively selected during viral evolution in a human
ost to increase glycan shield density. These assist
he virus in evading the immune system, with im-
acts on infectivity [11 ]. Therefore, acquisition of
xtra glycans that presumably improves viral fitness
nd adaptation in humans might have occurred over
he long course of the SARS-CoV-2 pandemic. 
Phylogenetic analysis of sarbecoviruses based on

heir S sequences reveals four clades: clade 1a (e.g.
ARS-CoV-1), clade 1b (e.g. SARS-CoV-2), clade 2
e.g. Rf1), and clade 3 (e.g. BtKY72) [12 ], among
hich coronaviruses from different clades display
istinct clade-specific sequence characteristics at
ey sites shown to play roles in modulating viral
nfectivity, antigenicity, and cross-species trans-
ission ( Fig. S1A). In contrast to SARS-CoV-1,
hich emerged in 2002, was under control in 2003
nd disappeared in 2004, SARS-CoV-2 seems to
oexist with humans. After a prolonged period of
early-complete global dominance of XBB sub-
ariants, substantially mutated lineages, designated
A.2.86 sublineages, have quickly spread worldwide,
ut-competing XBB ( Fig. S1B) [13 –15 ]. BA.2.86
ublineages contain more than 30 mutations in
he S when compared to XBB or its parental BA.2,
nd some of these mutations have been rarely ob-
erved in previously circulating variants ( Fig. S1C)
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[13 –15 ]. The substitution P621S is a feature of 
SARS-CoV-1 variants and P681R is a fusion- 
enhancing modulator contained in Delta [16 ]. Both 
P621S and P681R have been selected in the BA.2.86 
lineage ( Figs S1A, S2A). The mutation K356T, 
predicted to acquire glycosylation at N354 due to 
the formation of a standard N-linked glycosyla- 
tion site motif (NXT/S) occurred only in recently 
emerging SARS-CoV-2 variants, rather than in early 
SARS-CoV-2 variants and sarbecoviruses from other 
clades ( Figs S1A and S2A). In addition, the new 

substitution of H245N in BA.2.86 yields one extra 
glycan at N245, further suggesting a gradual accu- 
mulation of a glycan shield. Coincidentally, a distinct 
footprint of positive selection located around a new 

non-sy nony mous change (A1067C; K356T) within 
the RBD was found through scanning over 180 0 0 0
SARS-CoV-2 genomes deposited from September 
1, 2023 to January 1, 2024, indicating a selective 
sweep ( Fig. S1D). Details of how the acquisition of 
glycosylation sites impacts the fitness of the virus 
are not clearly understood. 

RESULTS 

N354 glycosylation modulates RBD 

conformation 

To explore the putative acquisition of glycosylation 
at N245 and N354 in more recent variants, we deter- 
mined the asymmetric cryo-EM reconstructions of 
the BA.2.86 and JN.1 S-trimer at pH 7.4, to mimic 
the physiological conditions at atomic resolution 
(Fig. 1 A, Fig. S3A, S3B, and Table S1). In con- 
trast to S-trimers from most variants ranging from 

WT, D614G through Alpha, Delta, Omicron to XBB 

and XBB.1.5, which sample the RBD-up conforma- 
tion more frequently ( > 50%), BA.2.86 and JN.1 
S-trimers dominantly adopt a closed state with all 
three RBDs in the down configuration (Fig. 1 A), 
similar to structural observations of VAS5, a highly 
attenuated SARS-CoV-2 vaccine candidate [17 ]. In 
line with these structural observations, BA.2.86 was 
previously reported to have compromised infectiv- 
ity and attenuated pathogenicity in animal mod- 
els [18 ,19 ]. Compared to other variants, there are 
two additional glycosylation related modifications 
at N245 and N354 in BA.2.86 sublineages, among 
which N245 glycan lies at outermost region of each 
NTD around the triangular vertices of the S-trimer 
(Fig. 1 B). Notably, the N354 glycan resides in a cleft
formed by the NTD and RBD from two neighboring 
subunits, and establishes hydrogen bonds with T167 
of NTD and with E340 of RBD, respectively, acting 
like a ‘bolt’ to lock the S-trimer in an ‘RBD-down’ 
state (Fig. 1 B and C). This is akin to roles played
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Figure 1. N354 glycosylation modulates RBD conformation. (A) Surface characterization of S-trimer of BA.2.86 and JN.1 in ‘up’ and ‘closed’ conforma- 
tional states. The three subunits of S protein are colored in yellow, light blue, and purple, respectively, and the N-glycans are highlighted with sticks. 
(B) The glycosylation modifications at N245 and N354 in BA.2.86 sublineages are shown in detail. (C) RBD of the ‘closed’ conformation of BA.2.86 
S-trimer superimposed with the XBB.1.5 S-trimer. Top view (top right) and center section (bottom right) show intersubunit contacts of BA.2.86 and 
XBB.1.5 S-trimers. (D) The conformational change details between BA.2.86 (yellow) and XBB.1.5 (gray) in S1 subunit. The shift distances and directions 
of NTD, RBD, and SD2 towards the 3-fold axis are labeled. (E) The role of N354 glycosylation in regulating changes in the ‘up’ and ‘down’ conforma- 
tional ratio of the RBD in ‘Remove N354 glycosylation’, ‘Gain N354 glycosylation’ and ‘Control’ groups. In each group, the proportion of ‘RBD-down’ 
conformation are displayed with a bar chart. Blue and pink bars represent variants without and with N354 glycosylation. (F) The buried surface areas 
(BSA) between RBDs of D614G, XBB.1.5, WT, BA.2.86, RaTG13, and S52 are compared. (G) A correlation plot created between the contact area between 
RBD subunits and the ‘RBD-down’ rate. 
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y L A , a polyunsaturated fatty acid found in RBD in
tabilizing the RBD-down state by locking the con-
ormation of the S-trimer [20 ]. In line with this, the
354 glycosylation confers a more compact archi-
ecture in the region formed by the three NTDs and
BDs (Fig. 1 C). When the closed S-trimers were su-
erimposed with its counterparts from XBB.1.5, the
TD, RBD, and SD1 from BA.2.86 moved inward
o the 3-fold axis with the shift distances of 6 Å, 3 Å,
nd 2 Å, respectively (Fig. 1 D), forming a tight pack-
ng between NTD and RBD. 
To further verify the role of N354 glycosylation

n modulating RBD up/down disposition, four
dditional modified constructs, BA.2.86-T356K,
redicted to remove glycosylation at N354, XBB.1.5-
356T and BA.2.75- K356T, predicted to acquire
354 glycan, together with BA.2.86-ins483V as
 control, were characterized, and their structural
eatures were compared with the ancestral strain
Fig. 1 E and Fig. S3C). Indeed, various factors such
s purification method, buffer conditions, and cryo-
M sample preparation may, to some extent, affect
he RBD up/down ratio [21 ]. Thus, we performed
ll assays under the same condition by using three
epresentative variants (BA .2.86, BA .2.75, and
BB.1.5) with strict controls (loss and gain of N354
lycan). We observed that N354 glycosylation dra-
atically increased the proportion of the ‘closed’
orm from 19% to 79% in BA.2.86, 50% to 75% in
A.2.75, and 45% to 90% in XBB.1.5, making the
closed’ form the dominant population (Fig. 1 E).
owever, the insertion of V483 had little effect on
he modulation of the RBD conformation (Fig. 1 E),
uggesting the ‘closed’ and ‘open’ form transition
as not due to the general effects of mutations in
BD but the specific presence of N354 glycosyla-
ion. Results of our studies together w ith prev ious
tudies on N-glycans at N165, N234, and N370 (not
ound in all SARS-CoV-2 variants) capable of partic-
pating in RBD up/down disposition [5 ,8 ], allows
s to propose a detailed molecular basis for RBD
onformation modulation, in which compact inter-
ubunit (S1/S1) arrangements relay a cascade of
nteractions mediated by specific N-glycans via tight
onnections with neighboring subunits or intrinsic
acking modes, facilitating the RBD-down switch
Fig. 1 F). To further decipher the relationship be-
ween inter-subunit contacts and ‘RBD-down’ rate,
e systematically analyzed the S1/S1 or RBD/RBD
r NTD-RBD/NTD-RBD interactions and calcu-
ated the ‘RBD-down’ rates of available SARS-CoV-2
-trimer structures ( n = 21), including ours in this
tudy. We found that contact areas between RBDs
etermine the ‘RBD-down’ rate with a compelling
orrelation of 0.92 (Fig. 1 F and Fig. S3D). Of note,
BD/RBD contact areas of over 400 Å2 drive the
Page 4 of 15
S-trimer to be in the closed state only, which is a
common feature in animal derived sarbecoviruses, 
such as bat RaTG13, pangolin PCoV_GX, and 
BANAL-20–52. However, those sarbecoviruses are 
able to bind ACE2, but with decreased infectivity 
in human cells [22 –24 ]. These results led us to hy-
pothesise that the N354 glycan, nestled between the 
NTD and RBD interface, may function as a confor- 
mational control element for modulating infectivity. 

N354 glycosylation decreases infectivity 
irrespective of comparable hACE2 
binding 

Given the fact that the presence of the N354-linked 
glycan favors the closed state in BA.2.86 sublineages, 
this presumably leads to a compromised infectivity 
and attenuated pathogenicity. To verify this, we first 
compared the infectivity of BA.2.86 and represen- 
tative SARS-CoV-2 variants by using pseudotyped 
viruses in HEK293T cells overexpressing hACE2 
(293T-ACE2) or TMPRSS2 (293T-TMPRSS2) 
or both hACE2 and TMPRSS2 (293T-ACE2- 
MPRSS2) and in widely used cell lines, such as 

Vero, H1299, and Huh-7. Like Omicron variants, 
BA.2.86 can enter cells via endosomes as well as 
through TMPRSS2 but prefers ACE2-mediated 
infection ( Fig. S4A) in concordance with authentic 
BA.2.86 infection results [25 ]. Overall BA.2.86 
exhibited a partially decreased infectivity compared 
to most Omicron variants (Fig. 2 A and Fig. S4A), 
which largely matches with recent studies [13 –15 ], 
albeit with improved entry into lung cells rather 
than other cells relative to specific variants being 
observed as well [26 ,27 ]. These in vitro findings 
correlate to in vivo clinical observations that cur- 
rently there are no reports of elevated disease 
severity associated with this variant [28 ]. Virus- 
host receptor engagement and membrane fusion 
directly affect viral infection efficiency. To further 
investigate if the RBD-dynamics modulator (N354 
glycosylation) and putative fusion-related muta- 
tion (P621S) impact infectivity, we constructed 
BA .2/XBB.1.5/BA .2.86 derivatives that bear re- 
spective mutations and measured their infectivity in 
293T-ACE2, Vero, and Huh-7 cells (Fig. 2 B). As ex- 
pected, acquisition of N354 glycosylation generated 
by the K356T mutation in BA.2 and XBB.1.5 de- 
creased its infectivity, and loss of N354 glycosylation 
raised by the reverse mutation T356K in BA.2.86 
increased its infectivity (Fig. 2 B). Surprisingly, the 
substitution of P621S predicted to affect fusion activ- 
ity in BA.2 and XBB.1.5 contributed to the increased 
infectivity; in turn the reverse substitution of S621P 

in BA.2.86 resulted in further decreased infectivity 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
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Fig. 2 B). Coincidentally, the N354 glycosylation
K356T mutation) first emerged in BA.2.75.5 and
hen in XBB.1.5.44, but they did not display growth
dvantages compared to the prevalent variants, pre-
umably due to the dramatically reduced infectivity
 Fig. S2A). S621P to a large extent compensated
he decreased infectivity conferred by the N354
lycosylation. 
We next sought to examine the possibility that

he N354 glycosylation mediated impaired infec-
ivity may be related to decreased binding affinity
o hACE2. For this, three paired groups of six vari-
nts (BA .2.75/BA .2.75.5; XBB.1.5/XBB.1.5.44;
A .2.86/BA .2.86-T356K) were carefully selected
ue to the only difference being the presence of
354 glycosylation or not in their RBDs. Surface
Page 5 of 15
plasmon resonance (SPR) results demonstrated 
that RBDs with or without the N354 glycosylation 
showed comparable binding affinities to hACE2, 
indicating that the N354 glycosylation does not 
impact hACE2 binding (Fig. 2 C). Moreover, the 
binding affinities of the BA.2.86 S-trimers with or 
without the N354 glycosylation for hACE2 yielded 
similar results ( Fig. S4E), despite N354 glycosy- 
lation promoting the S-trimer ‘RBD-down’ state. 
To further structurally verify this, we determined 
the cryo-EM structure of the BA.2.86 S-trimer 
in complex with hACE2 (Fig. 2 D, Fig. S4B, and 
Table S1). Like most complex structures, one or two 
copies of hACE2 are bound to the RBDs in the up
configuration (Fi g. 2 D). Consis te n t with binding
results, both the N354 glycan and T356 are located 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
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ar away from the interface ( Fig. S4C). However,
e noted that variants with the N354 glycosylation
xhibited very high affinities to hACE2, reflecting
hat tight binding might be required to further
ecover the compromised infectivity (Fig. 2 E). To
urther explore the contribution on hACE2 tight
inding exemplified by BA.2.86, we evaluated the
ndividual substitution (including reverse muta-
ion) of N354Q, T356K, K403R, D450N, H445V,
452L, L455S, K481N, ins483V, K484A, or P486F

n BA.2.86 RBD on the hACE2 affinity. Surprisingly,
ll single mutations except for L455S identified in
N.1 displayed, to some extent, increased binding
ffinities and single reverse mutation of D450N,
445V, and P486F induced an ∼3-fold affinity

ncrease (Fig. 2 F). Furthermore, mutations iden-
ified in key variants were also evaluated, among
hich a reverse-mutated combination of N417K
nd H505Y, as well as a pair of Flip-mutations of
455F and F456L synergistically enhanced hACE2
inding (Fig. 2 G). Structural comparisons revealed
hat the substitutions of N417K and H505Y estab-
ished extra hydrogen bonds with D30 and E37 on
CE2, and mutations, including P486F, H445V,
452L and L455F-F456L augmented hydrophilic

nteractions of the microenvironment, increasing
inding capabilities ( Fig. S4D). These suggest that
uccessful selection for acquisition of the N354
lycosylation possibly needs to be accompanied
y tighter ACE2 binding together with the P621S
ubstitution, co-manipulating the infectivity. 

ecreased infectivity by N354 
lycosylation can be restored by HS 

iruses like influenza and coronavirus use glycans
s entry factors. In particular, the initial interac-
ion with host cells is mediated by glycans [29 ].
row ing ev idence supports a role for negatively
harged glycans, such as heparin sulfate (HS) as
ntry co-factors for SARS-CoV-2 [30 ]. More impor-
antly, these entry co-factors and furin expression
re specially more abundant in nasal epithelial cells
nd upper airway cells compared to those in the
ungs [31 ]. Perhaps correlated with this, Omicron
ariants display a gradual increase in binding affinity
o HS compared to early VOCs [32 ], presumably
eading to a tropism alteration during SARS-CoV-2
volution. Together with increased positive charges
 Fig. S5A) and nearly all closed S-trimers mediated
y the N354 glycosylation (Fig. 1 A), these raise
 possibility of altered entry factor usage in nasal
pithelial and upper airway microenvironments. To
imic authentic virus infection at multiple steps of
 iral life c ycles in nasal and upper airway tracks, we
valuated co-factor usage efficiency in representa-
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tive variants via pre-treatment of virus-like particles 
(SC2-VLPs) [33 ] with various concentrations of 
free HS prior to infection by using 293T-ACE2-furin 
cells (Fig. 3 A). We observed that free HS displayed 
a dose-dependent reduced infection of BA.5, 
BA.2.75, and XBB.1.5, consistent w ith prev iously 
reported inhibition in S binding and infection by 
authentic SARS-CoV-2 [3 0 ]. Sur prisingly, HS treat- 
ment dramatically increased BA.2.86 infection, 
exceeding XBB.1.5 infectivity (Fig. 3 A), which 
suggests that abundant HS and furin aided the 
recovery of the decreased infectivity for BA.2.86. 
To further decipher the underlying mechanism, we 
constructed BA.5-K356T, BA.2.75-K356T, XBB.1.5- 
K356T, and BA.2.86-T356K SC2-VLPs to gain or 
remove the N354 glycosylation, respectively, and 
compared the effect in HS treatment with their 
parental SC2-VLPs. Strikingly, all the N354 gly- 
cosylated SC2-VLPs exhibited a dose-dependent 
enhanced infectivity upon HS treatment, reaching 
up to the infectivity level for their parental variants 
and loss of the N354 glycosylation largely eliminated 
the HS-induced enhanced infectivity in BA.2.86 
(Fig. 3 A), indicative of differential usage of HS as 
a cofactor for modulating infectivity of the N354 
glycosylated variants in furin/hACE2 enriched 
microenvironments. This observation has recently 
been reflected by experimental observations of 
potent infections for BA.2.86 in nasal epithelial cells 
[34 ]. In line with these results, the N354 glycosy- 
lation partially impaired binding of HS to RBDs 
(Fig. 3 B). Intriguingly, HS-mediated enhancements 
of infectivity for the N354 glycosylated variants 
became marginal by using pseudo-typed viruses in 
293T-ACE2 cel ls, whi le HS dose-dependent inhi- 
bitions of infectivity for variants without the N354 
glycosylation were sti l l straightforward ( Fig. S5B). 
The possible reason for differences yielded from 

two systems might lie in excessive redundancy of 
spikes decorated on VSV-based pseudoviruses, in 
which limited numbers of the ‘open’ spikes can 
initialize a successful infection even though the 
majority are in the closed state, largely diluting roles 
played by HS in modulating infectivity of the N354 
glycosylated variants via promoting the RBD-up 
transition. Collectively, these revealed that HS and 
furin enriched microenvironments might offset the 
impaired infectivity caused by the N354 glycosyla- 
tion and even possibly support the shift in tropism 

towards HS-abundant cells. 
To understand SARS-CoV-2 engagement of the 

HS cofactor and how the N354 glycan alters HS us- 
age at the molecular level, we determined cryo-EM 

structures of XBB.1.5, BA.2.86, JN.1, and BA.2.86- 
356K in complex with HS at 3.2–3.8 Å (Fig. 3 C 

and Fig. S5C). Interestingly, incubation with HS led 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
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Figure 3. Mechanism of the ability of heparan sulfate recovering decreased infectivity by N354 glycosylation. (A) The infectivity of BA.5, BA.2.75, 
XBB.1.5, BA.2.86-T356K (blue) and their corresponding K356T (pink) mutant virus-like particles (SC2-VLPs) in 293T-ACE2/Furin cells with or without 
preincuation with increasing concentraion of HS. (B) Binding affinity of RBDs of BA.5, BA.2.75, XBB.1.5, BA.2.86-T356K and their corresponding K356T 
mutant to HS tested by SPR. (C) The cryo-EM structures of BA.2.86 and BA.2.86-T356K S-trimer bound to HS are shown in the upper and lower panels, 
respectively. In each panel’s left corner, HS was docked to S-trimer by MOE. The binding grooves of HS are indicated by ‘dotted zones’ on the electrostatic 
surface of S-trimer. Pink surface of N354 glycosylation on BA.2.86 is highlighted by yellow stars. In the upper right corner, the explicit binding location 
of HS ‘N354 pocket’ in groove has been zoomed in and indicated by a light-yellow shadow. HS determined by cryo-EM and docked by MOE are colored 
in green and white, respectively. In the lower right corner, interface details of HS determined by cryo-EM with S-trimer are shown. Hydrogen bonds are 
displayed by yellow dashed lines. The unit of value for the color bar is kcal/(mol·e) at 298 K. (D) Influence of HS on the ‘RBD-up’ conformational proportion 
within the S-trimer of BA.2.86, JN.1, BA.2.86-T356K, and XBB.1.5. Both BA.2.86 and JN.1 are glycosylated at position N354, shown in red bars. BA.2.86- 
T356K and XBB.1.5, which lack glycosylation at position N354, are shown in blue bars. (E) Surface and cartoon representation of HS binding grooves 
consisting of a pair of spatially adjacent RBD (purple) and NTD (cyan) from different subunits of BA.2.86 (upper panel) and BA.2.86-T356K (lower panel). 
In each panel, apo state and HS-bound state are shown. Distance of HS binding grooves is indicated by orange dashed curves. 
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o marked conformational alteration, yielding sub-
tantially increased ‘RBD-up’ state in the N354 gly-
osylated S-trimers, but had limited impact in RBD
onformation modulation for S-trimers without the
354 glycosylation (Fig. 3 D). Due to structural het-
rogeneity and flexibility of HS, only the density for
Page 7 of 15
part of the HS basic unit, IdoA (2S) (2-O-sulfo- α-
L-iduronic acid), is clear, allowing identification of 
the location of major binding sites and interactions 
(Fig. 3 C). In contrast to binding of sialoglycan to
the domain A (corresponding to the NTD in SARS- 
CoVs) in HKU1 and MERS-CoV [35 ,36 ], HS mainly 
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argets a semi-open, shallow, elongated cavity com-
osed of a number of positively charged residues
n RBD, downstream within a deep groove, named
he N354 pocket, constructed by the residues N354,
355, K/T356, and R357 from RBD and T157 and
168 from neighboring NTD, is occupied by the HS
ragment (Fig. 3 C). The HS fragment is poised to
ossibly interact with R355 and R357 through hy-
rogen bonds and a salt bridge, meanwhile residues
356, N354, R34 6, and R4 66 might contribute to
urther coordinate the oligosaccharide (Fig. 3 C).
otably, the absence of the N354 glycan in the im-
ediate vicinity of the binding groove probably facil-

tates unobstructed engagement of HS, in line with
he observed affinity; however, the presence of the
354 glycan together with the bound HS widens
he binding groove by 3 Å, pushing the neighboring
TD outwards and thereby conferring a relatively
elaxed upper arrangement (Fig. 3 E). The high pro-
ortion of the ‘3-RBD-down’ state led by the N354
lycan mediated compact upper architecture could
e partially converted to the ‘RBD-up’ state upon HS
inding, which explained the experimental observa-
ion that HS treatment increased infectivity for the
354 glycosylated variants. 

354 glycosylation affects S cleavage 

nd fusogenicity 
e next sought to examine the possibility that the

mpaired infectivity caused by the N354 glycosyla-
ion in some cells might be related to differential
 cleavage. For instance, Delta, which is known to
how higher infectivity, is associated with a highly
leaved S protein and more efficient TMPRSS2 us-
ge for entry [37 ]. Furin cleavage dependent on the
olybasic cleavage site (PBCS) between S1 and S2
s a key step in regulating virus infectivity and fu-
ion activity [37 –39 ]. Alterations at P681 in PBCS
ave been observed in multiple SARS-CoV-2 lin-
ages, H681 in Alpha and most Omicron variants;
681 in Delta and BA.2.86 (Fig. 4 A). To evaluate the
leavage efficiency, we first tested the cells used for
T, BA.2, and BA.2.86 pseudoviruses production
y western blot analysis. We found substantially im-
roved cleavage in BA.2.86 compared with BA.2 as
videnced by the ratio of S1/S2 to full-length S, de-
pite being slightly lower than that in WT and Delta
Fig. 4 B and C), suggesting that mutation at P681
ontributes non-exclusively to S cleavage. To further
nvestigate putative contribution on enhanced cleav-
ge, we also evaluated S cleavage in BA.2.86-T356K
nd BA.2.86-S621P. Interestingly, the loss of N354
lycosylation through T356K mutation decreased
leavage efficiency and the reversion of S621P mod-
Page 8 of 15
erately increased S cleavage (Fig. 4 C), indicative of 
BA.2.86 S-trimers being more likely in a postfu- 
sion conformation under furin enriched microenvi- 
ronments. Given our data showing inefficient TM- 
PRSS2 usage for BA.2.86 sublineages, N354 glycosy- 
lation appears to negatively correlate between cleav- 
age efficiency and infectivity (Fig. 2 B and Fig. 4 C). 

The ability of SARS-CoV-2 S to induce cell–
cell fusion, providing an additional route for viral 
dissemination and promoting immune evasion, 
correlates with the PBCS, S cleavage efficiency, and 
the usage of TMPRSS2 [37 ]. Given the requirement 
of TMPRSS2 and S cleavage for optimal cell–cell 
fusion, Delta displayed the highest fusion activity; 
on the contrary BA.1 had quite low fusogenicity 
[38 ,39 ]. We hypothesized, based on the increased 
cleavage efficiency, that the fusion efficiency is al- 
tered in BA.2.86 in comparison to BA.2. To examine 
this, we used a split GFP system [37 ] to moni-
tor cell–cell fusion in real time. We observed that 
BA.2.86 showed an increment in cell–cell fusion 
compared to BA.2, but was sti l l demonstrably lower 
than WT and Delta (Fig. 4 D). Fusion inhibitors 
like EK1 showed very potent fusion inhibitory 
activity against BA.2.86-S-mediated fusion [40 ] . 
The efficiency in fusion is reversely correlated with 
the stabilities of S-trimers ( Fig. S6A), which can be 
explained by the fact that structural transitions from 

the prefusion to postfusion stage involve a series 
of conformational changes between domains and 
subunits, a prerequisite for viral fusion. Structural 
comparisons with BA.1 revealed reduced inter- 
actions between domains, including NTD-RBD, 
RBD-SD1/SD1-S2, and S2-S2 in BA.2.86, struc- 
turally explaining compromised stability ( Fig. S6B). 
Not surprisingly, either the loss of the N354 glycan 
or substitution R681P/H in BA.2.86 substantially 
reduced the cell–cell fusion activity; on the contrary 
acquisition of the N354 glycan or the mutation 
H681R based on XBB.1.5 contributed to increased 
fusion activity (Fig. 4 E). The improved S processing 
and fusion might be related to the structural observa- 
tion through an allosteric mechanism that the N354 
glycan tightly cements the NTD and RBD from adja- 
cent subunits together presumably aiding in S1 shed- 
ding, a pre-requisite step for subsequent fusogenic- 
ity. As expected, the single mutation S621P based 
on BA.2.86 improved the fusion activity and the 
mutation P621S in XBB.1.5 dramatically decreased 
its fusion efficiency (Fig. 4 E). In line with functional 
observations, the mutation P621S facilitates forma- 
tion of an α-helix in the 630 loop, a key modulator
for fusion [1 ,41 ], that would be adopted as a partially 
disordered loop in P621 variants, to some extent 
structurally impeding structural rearrangements for 
subsequent fusion (Fig. 4 F). These data indicate that 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
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he N354 glycosylation coupled with P621S alters
ultiple virological characteristics, in which cell–
ell fusion activity renders the N354 glycosylated
ariants difficult to be neutralized by antibodies. 

356T coupled N354 glycosylation 

pecially escapes a subset of ADCC 

ntibodies 
ajor selective pressures for previous VOCs, such
s Delta, BA .2, BA .5, and XBB causing waves of
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infections globally, came from specific classes of an- 
tibodies driving immune evasion [2 ]. Compared to 
FLip and other XBB variants, BA.2.86 did not show 

substantial humoral immune escape, while JN.1 
with one additional mutation (L455S) on BA.2.86 
became more immune-evasive due to extensive 
resistance across three types of antibodies [42 ]. Pre- 
viously, we determined the escape mutation profiles 
and epitope distribution of a total of 3051 antibodies 
isolated from vaccinated or breakthrough infection 
(BTI) individuals by deep mutational scanning 
(DMS), which were classified into 12 subgroups 
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Figure 5. K356T coupled N354 glycosylation specially escapes a subset of ADCC antibodies. (A) t-SNE and unsupervised clustering of antibodies that 
bind SARS-CoV-2 RBD. Twelve epitope groups were identified from the DMS dataset (3051 antibodies). (B) Heatmap of neutralizing activity against 
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of ADCC effect of RBD antibodies. Four types of color bars represent the base 10 logarithm of the maximum of experiment curve, the base 10 logarithm 

of the maximum of the fitting curve by four parameters fitting, the base 10 logarithm of EC50 and area under curve from Fig. S7. The antibodies with 
‘grey bar’ representations were not selected to perform ADCC assays. These antibodies cannot bind to the WT RBD, but the surface antigens of the 
target cell for ADCC assays are from SARS-CoV-2 WT variant. 
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Fig. 5 A). Immune evasion pattern assays revealed
hat BA.2.86 sublineages specifically escaped A2,
3, part D4, and many E antibodies when compared
o XBB.1.5 (Fig. 5 B). Strikingly, acquisition of the
354 glycosylation by the K356T substitution

argely inactivated group E1, E2.1, and E2.2 antibod-
es, although these antibodies displayed relatively
ow but broad neutralizing activities (Fig. 5 B and
ig. S7A). Class E antibodies from E1 to E3 target
pitopes on the RBD ranging from left flank through
hest to right flank, and most E1, E2.1, and E2.2 an-
ibodies extensively associate with K356 and N354,
hich has been validated by complex structures,
ncluding S309 (E1) (Fig. 5 C and Fig. S7B). The
utation K356T could decrease charge/hydrophilic

nteractions and the N354 glycan fatally induced
teric clashes, disabling the binding of most E1,
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E2.1, and E2.2 antibodies ( Fig. S7B). Fc-dependent 
effector mechanisms, e.g. antibody-dependent cell 
cytotoxicity (ADCC) mediated by natural ki l ler 
cells, could facilitate viral clearance from infectious 
individuals. Remarkably, we observed efficient E 

antibodies-mediated ADCC of SARS-CoV-2 S- 
transfected cells (Fig. 5 D and Fig. S7C), revealing 
that the N354 glycosylated variants coupled with 
K356T specially escapes one subset of ADCC 

antibodies. Of note, there is one limitation that 
antibodies from other classes possibly possessing 
ADCC activities, were not tested here due to no 
cross-reactivity to WT spikes in our ADCC system. 
Together with improved cell–cell fusion, these 
possibly make the N354 glycosylated variants dif- 
ficult to be cleared from individuals infected with 
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Figure 6. N354 glycosylation reduces immunogenicity in a hybrid immunity background. (A) Two cohorts of mice evaluating the immunogenicity of 
various SARS-CoV-2 variants. One cohort consisted of non-immunized BALB/c mice that received two doses of spike proteins (BA.5, XBB.1.5, EG.5.1, 
BA.2.86, BA.2.86-T356K), with a 14-day interval between each dose. The other cohort mimicked a real-world immunity background, where BALB/c mice 
were immunized with an inactivated vaccine (two doses of WT + one dose of BA.5) in addition to a single dose of spike protein (BA.5, XBB.1.5, EG.5.1, 
BA.2.86, BA.2.86-T356K). Blood samples were collected 14 days after immunization. The 50% neutralizing titer (NT50s) against Omicron variants (BA.5, 
XBB.1.5, EG.5.1, BA.2.86, BA.2.86-T356K) in plasma from a non-immunized BALB/c mice background (B) and from BALB/c mice simulating a real-world 
immune background (D). The p -values were calculated via a two-tailed Wilcoxon signed-rank test for paired samples. Radar plots of the spectrum of 
neutralization and bar charts of the immunogenicity of the five types of immunogens from a single immunity background (C) and a real-world mimicry 
immunity background (E). 
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354 glycosylation reduces 

mmunogenicity in a hybrid immunity 
ackground 

n addition to immune escape, viruses generally
volve to acquire new glycosylation sites on the pro-
ein surface, a natural phenomenon of glycan shield-
ng, which alters their glycoprotein immunogenicity
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[43 ]. To investigate if the N354 glycosylation may 
affect its immunogenicity, we first assessed humoral 
immune responses in naive (non-immunized) 
BALB/c mice following two-dose primary series 
immunization with variant S proteins (Fig. 6 A). All 
S proteins contained six proline substitutions (S6P) 
and mutations in the PBCS to stabilize them in the
prefusion conformation [9 ]. Groups of mice ( n = 10
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er group) were inoculated intramuscularly with
0 μg of variant S proteins, a widely used dosage for
mmunogenic evaluations in mice [3 ,44 ], including
A.5, XBB.1.5, EG.5.1, BA.2.86, and BA.2.86-
356K, on days 0 and 14, and sera were collected
t day 28 (2 weeks after the second dose). Admin-
stration of BA.5, XBB.1.5, and EG.5.1 S proteins
xhibited very low serum 50% neutralizing titers
NT50 ) against BA.2.86, BA.2.86-T356K, and JN.1
using vesicular stomatitis virus-based pseudovirus),
eanwhile immunization of BA.2.86 and BA.2.86-
356K resulted in quite limited neutralizing titers
gainst Omicron sublineages, suggesting a large
ntigenic distance between Omicron and BA.2.86
rom single immunity background analysis (Fig. 6 B
nd C). Notably, the N354 glycosylation decreased
A.2.86 immunogenicity by ∼40% in comparison
ith BA.2.86-T356K, rendering BA.2.86 a relatively
ower immunogenicity among SARS-CoV-2 variants
Fig. 6 C). 
To further evaluate the effects of the N354 gly-

osylation in SARS-CoV-2 immune imprinting in-
uced by breakthrough infections, we modeled a
eal-world mimicry immunity background in mice.
o accomplish this, two doses of 0.3 μg Coron-
Vac (1/10 human dose, an inactivated vaccine de-
ived from WT) were used as primary immuniza-
ion, then one dose of 0.3 μg inactivated BA.5
accine was administrated at 3.5 months after the
econd dose to mimic BA.5 BTI, and one dose of
0 μg variant S protein at 4 months after the third
ose was used to mimic BTI + reinfection (Fig. 6 A).
ompared to single immunity background, single-
ose administration of Omicron BA.5, XBB.1.5, and
G.5.1 S proteins under a hybrid immunity back-
round displayed ∼5–20-fold improved cross neu-
ralization against BA.2.86 sublineages and single-
ose immuni zation of BA .2.86 and BA .2.86-T356K
ould produce ∼50–200-fold increased neutraliz-
ng titers against Omicron subvariants (Fig. 6 D and
), suggesting that the existence of hybrid immune
mprinting facilitates cross-reactive B cell recall and
hortens antigenic distance. As ongoing evolution,
n intrinsic trend in gradually decreased immuno-
enicity for variant S proteins was observed and ac-
uisition of the N354 glycan further induced ∼2-
old reduction in the immunogenicity under a hybrid
mmunity background, consequently conferring al-
eviated immune imprinting (Fig. 6 E). Nonetheless,
 one-dose booster of BA.2.86, in particular BA.2.86-
356K, under real-world mimicry of immunity back-
round could elicit high levels of neutralizing an-
ibodies against BA.2.86 sublineages, including the
urrently prevalent JN.1 (Fig. 6 E), revealing that im-
une responses can be fine-turned to the BA.2.86
ublineages by boosting with a tweaked (BA.2.86-
Page 12 of 15
based) vaccine. These indicate an altered evolution 
trajectory towards more sophisticated adaptation in 
humans through acquisition of the N354 glycan. 

DISCUSSION 

A selectively favorable mutation spreading all or part 
of the way through the population generally causes 
a decrease in the level of sequence variability at 
nearby genomic sites [45 ], which can be manifested 
as a selective sweep signature. By using OmegaPlus 
and RAiSD, we mapped putative sweep regions in 
184 224 SARS-CoV-2 genomes deposited in the past 
4 months (from September 1, 2023 to January 1, 
2024) from the GISAID EpiCoV database (see Ma- 
terials and Methods). Four similar selective sweep 
regions were detected in the S from both datasets 
regardless of whether wild type or BA.2 or BA.5 
or XBB was used as a reference ( Fig. S1D). Two 
non-sy nony mous changes (A1067C and A1114G) 
within the codons for residues 356 (K→ T) and 
372 (T→ A) of RBD were centrally located in one 
of the sweep regions, leading to acquisition and 
loss of N354 and N370 glycosylation, respectively 
( Fig. S1D). Loss of the N370 glycosylation has been 
shown to be an important evolutionary event for 
SARS-CoV-2 emergence from animal reservoirs and 
the enhanced human-to-human transmission dur- 
ing the early stages of the pandemic [7 ,8 ]. Our
findings, to some extent, suggest that the N354 
glycosylation acquired by variants during the course 
of the prolonged SARS-CoV-2 pandemic likely con- 
fers selective advantage for optimal adaptation in 
humans through a shift in tropism with adjustable in- 
fectivity, reduced immunogenicity, and elimination- 
escaped immune evasion. 

The conformational dynamics of RBD, and 
modulation thereof, would render sarbecoviruses 
cunning to balance host cell attachment and immune 
escape. The transition to the ‘up’ state exposures 
of RBD for the binding to hACE2 is also a prereq-
uisite for S-mediated viral fusion, directly correlat- 
ing with infectivity. Thus, S proteins from most cir- 
culating SARS-CoV-2 variants have been observed 
in the RBD-up state with a reasonable proportion 
( > 50%). Remarkably, however, recently prevalent 
BA.2.86 sublineages dominate their S protein in the 
RBD-down state up to 100% for JN.1 due to acquisi- 
tion of the N354 glycosylation, shielding RBD from 

neutralizing antibodies and preventing RBD-hACE2 
engagement. Surprisingly, the decreased infectivity 
could be recovered by altered binding mode of HS 
co-factor to promote the RBD-up conformational 
transition, apparently through an allosteric mecha- 
nism, conferring an adjustable infectivity and a shift 
in tropism towards HS-abundant cells. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae206#supplementary-data
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During the process of viral evolution, viruses de-
elop different glycosylation modifications, yielding
ppreciable impacts on survival, transmissibility, and
tness. In general, the majority of N-glycan adding
utants show decreased infectivity and transmission
fficiency [46 ], in turn, immune-shielding glycans
re beneficial for immune evasion, which reflects a
ophisticated and balanced evolution strategy for N-
lycan site accumulation. Further evidence for this
as been documented in the viral evolution of In-
uenza A with additional N-glycan sites every 5–7
ears [47 ]. Whether the limited glycan shield density
bserved on SARS-CoV-1, SARS-CoV-2, and Mid-
le East syndrome coronaviruses (MERS) is corre-
ated to the zoonosis of the pathogens is unknown.
otably, among betacoronavirus genus, seasonal hu-
an coronaviruses HKU1 and OC43 have long co-
xisted with humans and possess 26–31 N-glycan
ites per S monomer, versus 22–23 N-linked glycan
equons in SARS- and MERS-CoVs ( Fig. S2B). Re-
arkably, N-glycan sites on OC43 S were accumu-

ated in the past 60 years with ∼2 N-glycan sites
dded every 20 years ( Fig. S2C). A marginal trend
n the relationship between N-glycan sites and preva-
ent time in humans was also observed in HKU1
resumably due to its first isolation and identifica-
ion in 2004. It’s tempting to speculate that ade-
uate prevalent time might be required to monitor
he glycan shield accumulation or HKU1 evolution
o enter a relatively mature stage, bearing ∼30 and
 N-glycan sites in S monomer and RBD, respec-
ively ( Fig. S2C). Even so, N-glycan modifications of
oronavirus S proteins do not constitute a bona fide
nd effective shield, when compared to the glycan
ensity of other viruses such as HIV, influenza, and
assa, which may be reflected by overall structure,
parsity, oligomannose abundance, and immune eva-
ion [48 ]. Although it’s difficult to directly compare
iruses in terms of immunogenic responses, SARS-
oVs readily elicit robust neutralizing antibodies
hat target S proteins following infection or immu-
ization [49 ,50 ]. In contrast, the effective glycan
hield of HIV hinders the production of sufficient
mmune responses and broadly neutralizing anti-
odies [51 ]. We speculated that the high plasticity of
ARS-CoV-2 spike RBD may limit the accumulation
f glycans on itself. The biological importance of the
354 glycosylation in modulation of SARS-CoV-2

mmunogenicity and immune responses may pro-
ide implications in coronavirus vaccine research. 

imitations of the study 
valuation of virus infectivity in vitro by cell lines
ay not completely reflect the true infection effi-
iency of the virus in vivo . Due to limitations of
iosafety level 3 laboratories and related materials,
Page 13 of 15
studies on viral tropism and infections in primary 
cells/organoids are interesting, but they are beyond 
the scope of the present study. The evaluation of an-
tibody escape also faces the same situation. Although 
the pseudovirus infection assay is classic and widely- 
used, immunological escape is a complicated pro- 
cess in vivo , requiring BSL3 laboratories and ideal an-
imal models. Additionally, the immune background 
against SARS-CoV-2 for the population is very com- 
plex. While mouse-based animal models cannot re- 
flect the human immune imprinting situation, it is 
challenging to perform related assays in humans due 
to the heterogenicity of the hybrid immunity from 

immunisation background and or breackthrough in- 
fections. 

SUPPLEMENTARY DATA 
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