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Abstract 

Early identification of emerging dominant SARS-CoV-2 variants is essential for effective pandemic 

preparedness, yet existing methodologies face significant limitations. Experimental 

characterizations are costly and not feasible for real-time surveillance, whereas existing 15 

computational approaches cannot achieve satisfactory precision in predicting future dominant 

lineages and fail to capture the spatiotemporal dynamics of fitness under evolving host immune 

pressures. Here, we introduce DeepCoV (DMS-Empowered Evolution Prediction of CoronaVirus), 

a deep-learning framework for the dynamic identification of novel variants with high potential to 

become prevelent. It integrates deep mutational scanning (DMS)-derived mutation phenotypes with 20 

epidemiological surveillence data reflecting historical viral evolution and the dynamic fitness 

landscape. DeepCoV accurately forecasted the dominance of recently circulating lineages a month 

in advance, achieving a 90% reduction in false discovery rate while capturing temporal and 

geographic dynamics of variant spread and reconstructing their regional prevalence trajectories. 

Moreover, DeepCoV identified mutational hotspots of Omicron-derived backbones in silico, 25 

revealing convergent evolution trends. This scalable solution enables timely identification of 

immune-evasive variants and prospective alert of critical mutations, providing actionable insights 

for vaccine updates and pandemic surveillance. 
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Main 30 

The evolutionary arms race between pathogens and human immunity emphasizes the necessity of 

proactive surveillance of emerging variants1-3. For rapidly evolving viruses such as SARS-CoV-2, 

early identification of high-growth lineages is essential to pandemic resilience, enabling timely 

updates to vaccines and informing the development of antibody-based therapeutics4-45. 

  35 

Although high-throughput experimental approaches such as DMS can generate valuable data and 

insights into the functional impact of individual mutations, their substantial resource requirements 

restrict their application for continuous surveillance46-52. Moreover, DMS-based methods are 

inherently incapable of capturing the evolutionary dynamics of full viral sequences within 

populations, as they typically probe only a subdomain of the full spike protein or restricted set of 40 

mutations and face challenges in modeling epistatic interactions, given the prohibitively large 

mutational combinatorial space51,53. These methods proved critical during the early phases of the 

COVID-19 pandemic but have become increasingly impractical.  

 

Statistical models based on sequence frequency dynamics—such as linear growth advantage 45 

estimation—offer alternative tools for inferring variant fitness directly based on epidemiological 

surveillance54. However, their predictive reliability declines substantially when data remain sparse, 

especially during the early stage of novel lineage emergence and in the post-pandemic period, when 

sequencing efforts have markedly decreased. More sophisticated frameworks, including EpiScore 

and PyR0, incorporate evolutionary constraints by modeling sequence prevalence over time55,56. 50 

However, they often struggle to pinpoint the most prevalent circulating strains. Without 

incorporating sequence information, such epidemiological analyses remain largely 

phenomenological and offer limited mechanistic insight into why certain variants rise to dominance 

while others fade. Meanwhile, reliably capturing sequence-level features remains inherently 

challenging for statistical approaches. 55 

 

Artificial intelligence (AI)-based methods have thus emerged as promising tools for forecasting viral 

evolution56-65. AI-based approaches can overcome the combinatorial explosion arising from multiple 

mutations within viral sequences and enable the integrated learning of large, diverse strain sets, 
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including capturing amino acid sequence evolutionary patterns. However, existing models remain 60 

limited in their ability to prospectively identify emerging dominant variants with sufficient accuracy. 

Viral protein sequence or structure-based approaches such as EVEscape (variational autoencoder 

based) and TEMPO (Transformer-based) exhibit strong representational capacity but typically 

overlook functional data, particularly experimentally derived measurements of antibody escape and 

other virological phenotypes captured through DMS58,65. Methods such as E2VD and CoVFit have 65 

advanced by leveraging mutational phenotypes, but they still often neglect the dynamic host immune 

context, which is critical for capturing the spatiotemporal dimensions of viral transmission62,66. 

Moreover, most current computational models fail to capture the dynamic viral fitness landscape 

under the co-evolution of host immune pressures, frequently underperforming compared to even 

simple linear growth advantage estimators in real-world predictive applications. 70 

 

Despite recent progress in both experimental and computational approaches, a major challenge 

remains in jointly capturing the spatiotemporal dynamic fitness landscape for viral evolution under 

evolving population immune pressures or herd immunity. Even within the same lineage, 

transmission advantages can diverge substantially across regions and time with distinct immune 75 

history. For instance, the Omicron sublineage XBB.1.5 exhibited markedly different growth 

trajectories in North America and parts of Asia, where preexisting immunity was shaped 

predominantly by prior BA.5 or BA.2.75 infections, respectively, highlighting how regional immune 

histories can modulate the apparent fitness of otherwise genetically similar variants. Meanwhile, 

DMS has been underutilized for predictive purposes, as most applications have remained descriptive, 80 

focusing on characterizing escape mutations rather than integrating functional data into dynamic 

evolutionary modeling46-49,51.  

 

To bridge this gap, building on our long-term experience and systematic understanding of DMS on 

viral antigens, we developed DeepCoV (DMS-Empowered Evolution Prediction of CoronaVirus), 85 

a predictive framework that integrates DMS-derived functional phenotypes, evolutionary sequence 

information, and epidemiological data reflecting immune pressures in human populations. By 

leveraging Transformer-based architectures, DeepCoV learns the mechanistic relationships between 

mutation effects and variant fitness, while incorporating background epidemiological data and 
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related sequence with pretrained protein language models to accurately model viral evolution at 90 

spatiotemporal resolution3,64,67. Collectively, DeepCoV provides a scalable and biologically 

grounded framework for forecasting SARS-CoV-2 evolutionary trajectories, thereby enhancing 

global preparedness and informing timely public health interventions. 

 

Results 95 

DeepCoV architecture 

Accurately forecasting the evolutionary dynamics of SARS-CoV-2 requires integrating information 

that reflects both the intrinsic viral fitness for infection and transmission, and the impacts of 

population immune pressure. To this end, we designed DeepCoV, a neural network framework that 

predicts the future prevelence of any SARS-CoV-2 Spike or RBD variant, leveraging three 100 

complementary data collected during months before the time of prediction: 1) Mutiple sequence 

alignment (MSA) of viral antigen sequences including the variant for prediction and other co-

circulating strains that prevail and compete within the same environment. 2) The proportions of the 

above strains since 180 days before the day of prediction, capturing the recent evolution of viral 

fitness with the population-level immunity and selective pressure considered implicitly, and 105 

endowing the model with the ability to learn the spatiotemporal dynamics of variant circulation. 3) 

Auxiliary functional mutation phenotypes derived from DMS quantify the impacts on virological 

characteristics and antigenicity of single mutations on the antigen, thereby grounding the model in 

experimentally validated datasets and molecular mechanisms. (Fig. 1 and Extended Data Fig. 1). 

For sequence modeling, we implemented an evolutionary module that captures amino acid 110 

substitution patterns in the target sequence and the most prevalent sequences at the time using the 

pretrained ESM-MSA-1b model, which learns evolutionary constraints from MSA68. To incorporate 

temporal dynamics, the historical proportion embedder employs a long short-term memory (LSTM) 

network to model prevalence trajectories over a sliding window spanning recent months (typically 

180 days) 69. These sequence and prevalence representations are concatenated and passed through 115 

an axial-attention module to capture residue-prevalence dependencies64. This architecture inherently 

encodes population-level immune histories by integrating background sequence context and 

prevalence dynamics, thereby reflecting how prior infections and vaccinations shape the viral fitness 
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landscape and influence variant emergence. Finally, the DMS processor incorporates quantitative 

mutational phenotypes, including antibody escape, human antisera evasion, ACE2 binding affinity, 120 

and protein expression, offering mechanistic insights into variant viability and transmissibility4,34,46-

51,70-77. By integrating these heterogeneous data streams, DeepCoV learns how individual amino acid 

substitutions and their functional consequences translate into shifts in population-level prevalence, 

thereby linking molecular evolution with epidemiological outcomes. This unified representation 

enables the model to infer variant fitness, anticipate lineage competition outcomes, and forecast 125 

regional prevalence trends over future time windows. Finally, DeepCoV is expected to predict the 

future proportion of a certain strain at any time point, with the sequences of itself and other co-

circulating strains, their historical proportions, and the impacts of mutations carried by the strain 

from DMS as inputs. 

 130 

DeepCoV accurately predicts predominant variants 

We first evaluated DeepCoV for the early identification of emerging dominant JN.1 variants using 

a retrospective approach17,19,38,78-83. Specifically, the model was trained exclusively on 

epidemiological records and receptor binding domain (RBD) sequences collected prior to October 

2023, along with DMS profiles generated before the emergence of JN.1 (Fig. 2a). To prioritize 135 

learning from dominant lineages, low-prevalence variants were filtered out from the training dataset. 

The remaining RBD sequences were then randomly assigned to the training and validation sets at a 

9:1 ratio, ensuring that all members of a given cluster were confined to the same split and preventing 

data leakage due to temporal dependencies. 

 140 

DeepCoV demonstrated high predictive capacity, evidenced by a strong correlation (Pearson’s r = 

0.969) for historically dominant lineages (Fig. 2b). We systematically compared DeepCoV with 

conventional growth advantage fitting method and state-of-the-art deep learning models, including 

E2VD and EVEscape, to evaluate their performance in meeting real-world pandemic surveillance 

requirement58,66. We first assessed how early these methods could correctly prioritize the known 145 

dominant variants (JN.1, KP.2, and KP.3) among the top predicted lineages. DeepCoV uniquely 

identified JN.1, KP.2, and KP.3 as top dominance candidates among all the RBD sequences appeared 
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since October 2023, well ahead of their observed dominance. In contrast, EVEscape successfully 

predicted only KP.2, and E2VD failed to detect any of the dominant variants (Fig. 2c).  

  150 

Detailed benchmarking across different numbers of top-ranked predicted variants confirmed 

DeepCoV’s superior ability to identify emerging dominant lineages. To comprehensively assess 

predictive performance, we conducted evaluations using both time-resolved dominant variants and 

a fixed set of globally prevalent strains under varying k-candidate thresholds. Ranking-based 

evaluation was adopted to minimize biases introduced by raw score distributions. For the time-155 

resolved ground truth, we evaluated two metrics across time points: the success rate of top-1 versus 

top-k prediction, and the Jaccard overlap ratio between the top-k predicted and top3 or top5 observed 

variants (Fig. 2d,e and Extended Data Fig. 2). For the static task involving a fixed set of globally 

prevalent strains, the objective was to rank variants with the highest overall prevalence appeared at 

the top. Across both evaluation schemes, our model consistently outperformed baseline methods，160 

especially at lower k thresholds (Fig. 2e,f and Extended Data Fig. 2). For both top-3 versus top-3 

and top-5 versus top-5 comparison, DeepCoV successfully identified all major variants; in contrast, 

other methods achieved at most one overlapping variant (Fig. 2d).  

 

As for the fixed-ground-truth evaluation using the top globally prevalent strains across dates in the 165 

test set, DeepCoV also achieved notably higher recall and substantially lower false discovery rates 

(FDR) at top-k candidate thresholds below 40 (Extended Data Fig. 3a,b,d,e). For top 3 dominants 

prediction, DeepCoV correctly identified JN.1, KP.2, and KP.3 as the subsequently prevailing 

lineages at k = 5, with closely related subdominant variants JN.1+F456L ranked immediately below 

(Extended Data Fig. 3c). To further assess robustness, we relaxed the dominance criterion to include 170 

the top 10 most prevalent variants and evaluated performance at k = 20. Even under this broader 

definition, DeepCoV continued to outperform baseline methods (Extended Data Fig. 3f). Overall, 

its predictive accuracy remained consistent across a range of k values, and was particularly strong 

at lower k thresholds. This ability to ensure that true dominant variants are captured within a small 

set of candidate sequences has significant implications for timely vaccine design and targeted public 175 

health interventions. 
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The fitness scores predicted by DeepCoV have an intrinsic quantitative interpretation, allowing 

them to be directly mapped to real-world variant prevalence. To account for varying definitions of 

dominance, we assessed model sensitivity using a dynamic three-stage benchmarking framework 180 

based on surveillance data: T1 (≥10 sequences, initial emergence), T2 (>30% growth advantage over 

a 7-day window with ≥100 sequences), and T3 (prevalence exceeding 5–50% while maintaining >15% 

growth advantage). For each RBD sequences appeared since October 2023 and reach T1, we 

evaluated prediction success relative to T2 and T3 (Extended Data Fig. 4). Across all prevalence 

threshold beyond 5%, DeepCoV achieved high recall, and accuracy with low FDR. At 35% 185 

prevalence threshold, all three predictions were correct. In contrast, the commonly used growth 

advantage–based method yielded 63 candidate variants. These results highlight DeepCoV’s ability 

to accurately identify dominant variants without relying on growth advantage, while also enhancing 

the efficiency of growth-based methods by substantially narrowing the candidate space. 

  190 

To assess the broader applicability of DeepCoV, we retrospectively evaluated its performance on 

earlier SARS-CoV-2 XBB lineage data, using a dataset partitioned at September 2022 and restricted 

to available DMS profiles from BA.1, BA.2, and BA.5 (Extended Data Fig. 5). Despite the reduced 

size and scope of the training set, DeepCoV achieved a strong correlation between predicted and 

observed prevalence (Pearson’s r = 0.957) and correctly identified the subsequent emergence of 195 

dominant variants XBB.1.5 and BQ.1.1, while slightly overestimating the prevalence of HV.1. 

These results underscore its robustness and predictive potential across distinct phases of SARS-

CoV-2 evolution. 

  

To investigate the contributions of individual model components and biological data modalities, we 200 

performed systematic ablation studies. Four model variants were constructed by selectively 

excluding key information: (1) immune background profiles, retaining only sequence and 

prevalence data; (2) DMS phenotypes, preserving sequence and immune trend inputs and replace 

DMS module with linear layers; and (3) evolutionary sequence context, replaced by ESM-2 

embeddings to isolate the effect of evolutionary modeling. Removal of any individual module 205 

resulted in a marked decrease in predictive performance (Fig. 2g,h and Extended Data Fig. 2b,c). 

We conducted the ablation experiments under both the dynamic dominant strain selection and global 
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dominant strain selection settings, and compared the RMSE of models trained under these different 

conditions. Both the DMS and immune-background modules were critical for accurately detecting 

dominant strains, substantially reducing FDR while maintaining recall. Moreover, eliminating the 210 

proportion or ESM-MSA-1b modules rendered the model incapable of training. Together, these 

results highlight the essential and collaborative contributions of immune landscape dynamics, 

evolutionary sequence context, historical prevalence trends, and functional mutational phenotypes 

to the overall predictive capacity of DeepCoV. 

  215 

DeepCoV captures variant spatiotemporal dynamics  

Beyond accurate early variant identification, DeepCoV effectively captures the spatiotemporal 

dynamics of SARS-CoV-2 variant spread, demonstrating substantial improvements over existing 

methodologies. We further reconstructed the evolutionary trajectories of dominant SARS-CoV-2 

variants with high temporal resolution using DeepCoV. The model effectively captured the full 220 

expansion and decline cycles of major JN.1 clades, maintaining stable predictive accuracy 

throughout the JN.1-dominant period (Fig. 3a). DeepCoV maintained consistently high precision 

over time, with major strain predictions showing slightly larger but acceptable fluctuations (mean 

absolute error (MAE) <0.1; root mean square error (RMSE) <0.15) (Extended Data Fig. 8). 

Importantly, DeepCoV demonstrated sensitivity to subtle early growth signals, successfully 225 

forecasting rising of dominant variants even from low initial prevalence (<5%). Notably, despite 

differing from its ancestral BA.2.86 lineage by only a single RBD substitution (L455S), the rapid 

rise of JN.1 was correctly captured by DeepCoV as the dominant variant. This highlights 

DeepCoV’s capacity to distinguish variants with minimal genetic differences but markedly 

divergent epidemiological trajectories, underscoring its sensitivity to functionally meaningful 230 

mutations. In addition to major lineages, the model faithfully reconstructed the growth trajectories 

of subdominant variants such as JN.1+F456L and JN.1+R346T, as well as high-growth advantage 

but ultimately low-prevalence lineages including JN.1+K403R and JN.1+N417K (Extended Data 

Fig. 8). DeepCoV also showed high specificity in handling non-dominant variants, with predicted 

peak prevalence consistently remaining below 3%. Moreover, even when the training set is restricted 235 

to data prior to the emergence of XBB, the model also successfully reconstructed the growth 
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trajectories of all major variants in the test set. Notably, even when trained exclusively on pre-XBB 

data, DeepCoV successfully forecasted the emergence of JN.1 sublineages (Extended Data Fig. 5b). 

These findings underscore the model’s utility for monitoring fine-scale viral evolution and guiding 

timely public health responses, including vaccine strain selection. 240 

  

By intrinsically incorporating regional immune landscape variations, DeepCoV successfully 

captures geographically distinct transmission patterns. The model accurately reconstructed 

intercontinental divergence patterns, clearly capturing the sequential emergence of KP.2 from 

Europe to North America and subsequently Asia (Fig. 3d). It also correctly identified elevated 245 

prevalence of variants such as BQ.1.1 and XBB in Western populations relative to Asia, while 

highlighting the regional dominance of HK.3 in Asia，reflecting regional differences in pandemic 

responses and immune imprinting. Although other models may account for temporal factors, 

DeepCoV uniquely combines spatiotemporal resolution with proactive forecasting and 

quantitatively validated accuracy, offering improved interpretability in complex epidemiological 250 

settings. 

 

Ablated models were further assessed on growth trajectory reconstruction (Fig. 3e). The no DMS 

variant erroneously overestimated the growth advantage of BA.2.86+K478E, underscoring the 

essential role of the DMS module in mitigating false positives. Moreover, removing any single 255 

module eliminated the early prediction of KP.2, indicating that complementary signals from multiple 

modules are required to support the model’s overall performance. 

 

To achieve finer period forecasting, we developed a continuous prediction model employing a 

LSTM network capable of forecasting variant trajectories over subsequent 1 to 60-day windows 260 

(Extended Data Fig. 8). This approach maintained robust predictive performance with low RMSE, 

comparable to the baseline model, although a slight decline in accuracy was observed over extended 

forecasting intervals (Extended Data Fig. 8b). Importantly, it was also capable of anticipating the 

future trajectory of dominant variants over a sustained period, even from early time points (Extended 

Data Fig. 8c ). Whereas the 30-day model focuses on short-term qualitative dominance prediction, 265 

the continuous model characterizes long-term prevalence dynamics, pinpointing when variant 
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expansion accelerates or decelerates. This framework enhanced DeepCoV's suitability for real-time 

surveillance and proactive public health planning. 

  

In silico mutational hotspot scanning 270 

Leveraging DeepCoV’s ability to capture evolutionary dynamics, we conducted analysis to in silico 

identify mutational hotspots within the SARS-CoV-2 RBD, aiming to understand the driving forces 

behind immune escape mutations during convergent evolution. We computationally generated all 

possible single-site RBD mutants for representative convergent lineages, including JN.1 and XBB 

variants, and applied models trained on temporally matched datasets from the respective JN.1 or 275 

XBB eras. By predicting time-resolved evolutionary scores for each mutation, we dynamically 

mapped site-specific evolutionary pressure and identified candidate hotspots likely to contribute to 

future adaptation (Fig. 4a). 

  

Our analysis successfully identified mutational hotspots at residues R346T and F456L in JN.1, 280 

which later became defining mutations in emerging strains such as KP.2 before their prevalence 

achieving 5% (Fig. 4c)41. As expected, site like 403, previously overestimated by DMS-based assays, 

did not exhibit notable predicted evolutionary potential. Similarly, DeepCoV accurately identified 

key mutational hotspots associated with subsequent variant dominance, including the early 

prediction of the S486P substitution, followed by F456L and L455F mutations within the XBB 285 

lineage25,84,85. These predictions accurately forecasted the sequential "FLip" mutation wave, 

reflecting real-world evolutionary trajectories. Importantly, DeepCoV identified these mutation 

patterns significantly ahead of widespread detection; for instance, the S486P hotspot could be 

predicted before XBB.1.5 (XBB with the S486P mutation) became detectable in global sequencing 

data (Fig. 4b). Subsequently, the emergence of residues 455 and the combination 455+456 mutations 290 

was identified in early evolutionary stages of variants like EG.5 and HK.3, aligning with structural 

insights suggesting compensatory functional interplay between these residues. Our findings 

demonstrate that DeepCoV effectively captures intrinsic residue-level drivers of evolutionary 

convergence. By combining temporal modeling of mutation phenotypes with sequence-based 

predictions, our approach mirrors the functional resolution provided by DMS experiments but with 295 

added temporal insights into mutation dynamics.  
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We further assessed the contribution of individual modules to JN.1 mutational hotspot detection and 

forecasting of future evolutionary trajectories (Extended Data Fig. 9). All ablated model variants 

exhibited a pronounced loss of hotspot discrimination, with only the F456L mutation detected in the 300 

no DMS model—likely reflecting prior selection signals from lineages such as XBB, where F456L 

conferred marked escape potential. Collectively, these complementary modules act synergistically 

to support reliable prediction of future mutational trends. 

  

DeepCoV generalizes to future SARS-CoV-2 evolution 305 

Recently, increased immune pressure on the spike protein’s N-terminal domain (NTD), which 

facilitates viral entry, has led to elevated mutational activity, establishing it as a secondary hotspot 

of adaptive evolution86-89. Variants such as XEC (T22N/F59S) and KP.3.1.1 (S31del) exemplify this 

trend, reflecting the evolving selective pressures shaping SARS-CoV-2’s immune escape 

mechanisms73,81,90-93. To capture the evolutionary shift, we extended DeepCoV to be trained on the 310 

full spike protein sequences, recalculating prevalence metrics based on unique spike clusters while 

preserving the original model architecture (Extended Data Fig. 10). Considering that most DMS 

measurements outside the RBD region are unavailable, which could interfere with model training, 

the updated model excluded the DMS module. The effect of removing this component could be 

partially compensated by the expanded number of Spike sequences incorporated into the training 315 

data. 

 

The refined approach maintained excellent prediction accuracy and consistently low FDR for 

dominant variants, while recall briefly decreased at intermediate then subsequently recovering at 

higher thresholds for widely circulating variants. Moreover, the updated model robustly 320 

reconstructed the evolutionary trajectories of complex variants such as KP.2.3 

(KP.2+S31del+H146Q) and KP.3.1.1 (KP.3+S31del), demonstrating strong generalizability. In 

addition, in silico mutational scanning of the NTD successfully identified S31 deletions as potential 

immune escape mutations, which had been suggested to enhance immune escape through allosteric 

modulation of RBD–antibody interactions mediated by additional NTD glycosylation91. These 325 

results underscore DeepCoV's robust capability to generalize to previously underrepresented 
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structural domains and highlight its utility in modeling future evolutionary adaptations. 

We updated the test dataset till May 2025 to evaluate DeepCoV’s performance against recently 

emergent strains, including LP.8 and KP.3+A435S whose peak prevalence exceeded 10% globally. 

The model maintained strong predictive accuracy (Pearson’s r = 0.968; Fig. 5b), accurately 330 

forecasting the emergence of LP.8 and continuing to perform well on expanded lineages such as 

JN.1, KP.2, and KP.3. Retrospective in silico mutational scanning of KP.3 and LF.7 revealed early 

detection of future-dominant mutations (Fig. 5a,d). Notably, A435S was identified as a prominent 

hotspot approximately one month before the widespread emergence of KP.3+A435S, while residue 

475, harbored by later emerging LF.7.2.1 strain, was similarly highlighted during pre-emergence 335 

scans. We further tested the model’s ability to resolve geographic prevalence differences by 

evaluating its prediction of NB.1.8.1 spatial dynamics5. As shown in Fig. 5c, DeepCoV accurately 

identified the disproportionately high prevalence of NB.1.8.1 in Asia relative to other regions. 

Together, these findings demonstrate DeepCoV’s continued ability to anticipate the emergence and 

geographic distribution of newly arising variants and mutational hotspots, even beyond its original 340 

training horizon. 

  

Discussion 

One of the major challenges in SARS-CoV-2 surveillance and vaccine design lies in both the timely 

identification of emerging dominant variants after their emergence and the anticipation of high-risk 345 

lineages before they arise. To address this, we developed DeepCoV, a computational framework that 

integrates key evolutionary drivers—viral MSA patterns, mutational phenotypes from DMS, and 

epidemiological data reflecting historical immune pressures—to effectively predict SARS-CoV-2 

variant prevalence. DeepCoV employs the ESM-MSA-1b to capture evolutionary constraints from 

sequence alignments, integrates DMS-derived phenotypic data through Transformer-based modules, 350 

and models temporal epidemiological trends using LSTM networks. By integrating sequence 

constraints, DMS-derived mutational effects, and temporal prevalence trends, and by formulating 

the training objective to emphasize early prediction of dominant strains, DeepCoV achieves 

markedly lower FDR and reliably identifies dominant variants ahead of conventional surveillance 

methods. Moreover, it captures global and regional variant prevalence trajectories and successfully 355 
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predicts evolutionary mutational hotspots in different dominant strain eras, serving as a robust and 

scalable tool for real-time surveillance of emerging viral populations. Ultimately, DeepCoV offers 

an effective early warning system that enhances public health preparedness by supporting timely 

policy decisions, optimizing vaccine strategies, and guiding surveillance efforts. 

  360 

Despite its strengths, DeepCoV has several limitations. The scarcity of comprehensive DMS data 

for certain protein domains—particularly regions outside the RBD—together with inherent 

sequencing errors in epidemiological datasets, may affect predictive performance. Moreover, 

epistatic effects are not explicitly modeled, and extending computational predictions to incorporate 

combinatorial mutations from DMS data could improve the representation of these 365 

interactions47,49,53,70,94. Future refinements might also integrate additional data modalities, such as 

structural protein information, to further enhance predictive accuracy and generalizability76,89. 

Meanwhile, although DeepCoV indirectly reflects population-level immunity through prevalence 

dynamics, it does not yet capture the full complexity of the evolving immune landscape. Future in 

silico virus–immunity co-evolution models that jointly learn viral antigenicity and host immune 370 

adaptation may offer a more mechanistic understanding of immune-driven viral evolution. Finally, 

the reliability of DeepCoV’s predictions is influenced by the breadth and representativeness of 

available sequence prevalence data, highlighting the value of continued global genomic surveillance. 

 

In conclusion, by integrating the comprehensive epidemiological and DMS datasets with frontier 375 

deep-learning-based protein language models, DeepCoV unifies evolutionary, functional, and 

epidemiological insights to build a reliable platform for the identification and prediction of prevalent 

SARS-CoV-2 strains. The model could be retrained and utilized in other fast-evolving epidemic 

viruses with enough datasets, such as influenza and RSV, once corresponding DMS datasets become 

available. Collectively, these innovations establish DeepCoV as a powerful tool for global health 380 

preparedness, enabling proactive responses to emerging infectious threats and informing timely 

vaccine and surveillance strategies. 
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 405 

Methods  

Data and preprocessing 

We obtained SARS-CoV-2 sequences with collection/submit dates from GISAID and retained 

human spike entries after de-duplication and MAFFT alignment95,96. Quality filters required spike 

length >1,230 aa, ≤10 non-standard residues, and ambiguity-free RBD; lineage-specific insertions 410 

(e.g., BA.1 ins214:EPE; BA.2.86 ins16:MPLF) were preserved. Unique RBDs were clustered and 

renamed relative to parental lineages for downstream modeling.  
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Spatiotemporal dataset construction 

For each representative region (global, North America, Europe, Asia, USA, UK, Japan), daily counts 415 

of unique RBDs were computed and 7-day smoothed. Training/validation data used t₀ snapshots 

with 16 top circulating background clusters in the preceding 180 days. At each reference date t0, the 

prediction target was the variant’s relative prevalence 30 days later (t1 = t0+30d). Ground-truth labels 

were retained only when the cumulative number of sequences in the t1 evaluation window was ≥100. 

We stratified t₀ across five pandemic phases, limited post-2023 analyses to global counts due to 420 

coverage decline, and split train/validation (90:10) by sequence to avoid leakage. 

  

Deep mutational scanning features 

We standardized DMS datasets covering entry efficiency, ACE2 binding, expression, and 

serum/monoclonal-antibody escape from public and internal sources, aligning them to spike and 425 

indexing by antigen, feature, site, mutant, and (where applicable) antibody. Temporal masking 

ensured only features available prior to t₀ were used; antibody escape was re-clustered into 56 

epitope groups; per-sequence vectors were produced by scanning one-hot sequences against aligned 

DMS tensors.  

  430 

Model overview 

DeepCoV integrates (i) frozen ESM-MSA-1b embeddings of the target and contemporaneous 

background sequences; (ii) a background-ratio encoder that summarizes 180-day variant frequency 

histories; and (iii) a DMS encoder gathering sequence phenotypes. Sequence and background 

signals are fused via an axial attention module (row/column transformers) and a transformer encoder 435 

that sequentially incorporates DMS features. Outputs are future variant proportions at a single 

horizon (t₁ = t₀+30 d). Additional details are provided in the Supplementary Methods.  

  

Training and objective 

Models were trained with AdamW (learning rate 10−4, weight decay 10−2) with 300-step warm-up 440 

and mixed precision under the PyTorch framework on NVIDIA A100 GPUs. The loss is a log-

transformed, sample-weighted MSE with (i) a validity mask based on t₁ coverage (≥100 isolates) 

and (ii) labelled proportion-dependent weights to mitigate class imbalance; for the continuous model, 
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an additional per-day Gaussian weight (μ=30, σ=10) emphasizes informative t1 horizons. Early 

stopping was applied as specified. 445 

  

Baselines and benchmarking 

Growth advantage. For each RBD cluster, daily frequency f(t) is fit by a logistic curve to estimate 

growth rate a. Growth advantage is defined as GA=ea × g − 1, with generation time g=7 days; 95% 

CIs are reported.  450 

EVEscape. For each candidate RBD, mutations are computed relative to a reference and per-

mutation EVEscape scores are aggregated to yield a composite sequence-level score, which is used 

to rank variants in the evaluation window.  

E2VD. We re-trained E2VD on an ESM-2 backbone and combined three sub-modules—ACE2 

binding, expression, and antibody escape—using an asymmetric scheme that penalizes decreases in 455 

expression/ACE2 (below functional thresholds) and rewards increases in escape (above a 

permissive cutoff). The final score is the sum of exponentiated deviations from empirically defined 

thresholds.  

Temporal/Ranking evaluations. We (i) track monthly dominant variants by taking the mode of 

day-wise winners per month, harmonizing method outputs (prevalence for DeepCoV/GA; score 460 

ranks for other models) and simulating surveillance lag for DeepCoV; (ii) quantify timeliness as the 

earliest date a well-known dominants enters top-N (e.g., 3 or 10); and (iii) run a dynamic top-k 

comparison over time. For multiple-truth settings, we report the Jaccard index 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑡𝑟𝑢𝑡ℎ) =
|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝑡𝑟𝑢𝑡ℎ|

|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪ 𝑡𝑟𝑢𝑡ℎ|
 

, and for single-truth settings we report prediction success rate (exact cover). (iv) run a static top-k 465 

comparison for well-known dominants. 

  

Generalization 

Updated JN.1-era setting. We retain the main model trained on data before 1 Oct 2023 and extend 

testing to 16 May 2025, with a lineage map that renames unique RBDs relative to parental references. 470 

A major-strain panel (JN.1, KP.2, KP.3, LF.7, LP.8, NB.1.8.1) is used for targeted trajectory 

evaluation.  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2025.10.17.683094doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.17.683094
http://creativecommons.org/licenses/by-nc/4.0/


 

17 

 

Spike variant. To satisfy ESM-MSA-1b input limits, spike inputs are truncated to the first 1,023 

amino acids (a minor biological compromise for C-terminal tail) while keeping all other processing 

consistent.  475 

XBB-era variant. To accommodate reduced training data, we decreased the depth of the MSA-

proportion fusion transformer from three to two layers; other components were unchanged.  

Continuous model. The output head is replaced with an LSTM to emit daily proportions; the loss 

includes a per-day Gaussian weight to emphasize mid-range horizons applied uniformly across 

samples together with a validity mask for insufficient coverage. (Full loss and masking details in 480 

the Supplementary Information.)  

  

In silico mutational scanning 

We generated pseudo single-amino-acid libraries on reference backbones (e.g., XBB.1.5, JN.1, 

KP.2/3, LF.7) for RBD (331–531) and NTD (14–305; including deletions), scored mutants with era-485 

matched models, and summarized site-level fitness by averaging positive, residue-normalized 

contributions; top positions were visualized via smoothed profiles and sequence logos.  

  

Ablation studies 

We quantify contributions of major modules via: (i) Sequence encoder swap (ESM-MSA-1b → 490 

ESM-2-150M) with other components fixed; (ii) No-DMS (replace DMS encoder with two feed-

forward layers to match dimensionality); and (iii) No background strains (encode only the target 

sequence and its 180-day prevalence; aggregate histories via LSTM and a transformer feature 

aggregator).  

  495 
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Figure Legends 

Figure 1｜Overview of model architecture and predictive applications 730 

The framework integrates sequence evolution, epidemiological information, and DMS data for 

variant dominance prediction, reconstruction of growth trajectory and mutational hotspots scanning. 

The emergence date of JN.1 is defined as the earliest date on which the number of JN.1 RBD 

sequences exceeds 10. 

  735 

Figure 2 | Accurate early detection of predominant strains by DeepCoV 

a, Dataset construction. Training sequences were collected prior to October 1, 2023, including 

variants that exceeded 0.5% prevalence for at least one day during the follow-up period. Validation 

sets were generated using cluster-based sampling at a 1:10 ratio to minimize temporal data leakage. 

b, Scatter plot comparing predicted versus observed variant frequencies at the evaluation time point 740 

(t₁). Colors representing different RBD lineages. 

c, Timeline of prediction milestones for DeepCoV and baseline methods (E2VD and EVEscape), 
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showing the performance (ranking reaching top 3 or top 10) for known dominant variants JN.1, 

KP.2, and KP.3. Actual emergence events, like ≥10 sequences, growth advantage > 30% and 

prevalence >20%, are labeled as reference points. For E2VD and EVEscape, rankings include 745 

variants with sequences appearing within a 2-month window. Solid circles connected by solid lines 

indicate successful predictions; dashed lines ending with a cross (×) denote prediction failures. The 

light grey shaded region highlights the period during which the true prevalence exceeded 20%. The 

inability to rank a dominant variant in the top predictions within this window is considered a failed 

prediction. 750 

d, Representative comparisons of top-k predicted and observed dominant variants at selected time 

points. Venn diagrams show the overlap between the predicted and observed top-k RBD variants 

for k = 3 (right; 2024-03-18, predicted 30 days in advance) and k = 5 (left; 2024-04-27). Predictions 

from DeepCoV (top row), EVEscape (middle row), and E2VD (bottom row) are compared against 

the corresponding observed sets. Variant labels indicate RBD lineage with key escape mutations. 755 

e, Top-k prediction performance over time for three methods: DeepCoV (red), EVEscape (orange), 

E2VD (blue) and growth advantage (green). The prediction success rate is shown for the top 

predicted dominant variant across varying k values (i.e., the number of predicted variants 

considered). 

f, Top-k prediction performance over time for three methods: DeepCoV (red), EVEscape (orange), 760 

E2VD (blue) and growth advantage (green). The jaccard index is shown for the top 3 predicted 

dominant variant across varying k values (i.e., the number of predicted variants considered). Error 

bars represent ±1 s.e.m. (standard error of the mean) across all evaluation time points. 

g, Top-k prediction performance over time for the ablated models. The jaccard index is shown for 

the top 3 predicted dominant variants across varying k values (i.e., the number of predicted variants 765 

considered). Error bars represent ±1 s.e.m. across all evaluation time points. 

h, FDR and recall metrics of the ablated models when k=15 for the top 10 circulating variants 

prediction during the JN.1 period. The top 10 true circulating variants includes JN.1, KP.2, KP.3, 

HK.3, JN.1+R346T, JN.1+F456L, HK.3+A475V, KP.2+G482V+K484E, KP.2+L456V+K478T, 

and KP.2+ins483V+K484E. 770 

  

Figure 3 | DeepCoV captures temporal dynamics and geographic variation in SARS-CoV-2 
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spread 

a, Growth trajectory reconstruction. Weekly aggregated temporal dynamics comparing predicted 

(dashed lines, proportion at s predicted from t0) versus actual prevalence (solid lines, observed at t0). 775 

Shaded regions represent mean ± standard deviation.  

b, Regional prevalence patterns across Asia, Europe and North America. Predicted (dashed lines) 

and observed (solid lines) variant proportions were aggregated weekly. 

c. Ablation study on growth trajectory reconstruction for BA.2.86 + K478E and KP.2. The black 

solid line indicates the full model and the dashed lines represents the ablated variants. 780 

  

Figure 4 | Dynamic mutational hotspot scanning in silico 

a, Schematic of the mutational scanning workflow. Pseudo single-residue mutational datasets were 

generated and evaluated using the predictive model to estimate evolutionary potential for each 

mutation. 785 

b, Temporal prevalence dynamics of variants containing convergent mutational hotspots. Vertical 

dashed lines indicate selected timepoints for in silico scanning. 

c, Predicted mutation preference landscapes for JN.1, XBB, XBB.1.5 and EG.5 prior to the onset of 

convergent evolution. 

 790 

Figure 5 | Updating SARS-CoV-2 variant data for future predictions 

a, Growth trajectory reconstruction using the renewed test set. Weekly aggregated predictions 

(dashed lines, t1 inferred from t0) are compared with observed prevalence (solid lines, measured at 

t0). Shaded regions represent mean ± s.d for days in a week. 

b, Pearson’s correlation coefficient of predicted versus observed variant frequencies at time   , for 795 

each strain prior to reaching its peak prevalence. Colors representing different RBD lineages. Each 

point represents a variant, colored by lineage.  

c, Predicted regional differences in NB.1.8.1 prevalence across Asia, Europe and North America. 

Predicted (dashed) and observed (solid) proportions are aggregated weekly. 

d, Prevalence of site-specific mutations in KP.3 and LF.7 prior to the emergence of convergent 800 

evolution, identifying early mutational hotspots. 
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Extended Data Figures 

Extended Data Fig.1 | Detailed schematic of model architecture 

  805 

Extended Data Fig.2 | Comprehensive evaluation of dominant variant prediction accuracy and 

temporal dynamics. 

a, Mean Jaccard overlap ratios between predicted and observed sets of dominant SARS-CoV-2 RBD 

variants across varying values of k (number of top-ranked predictions considered) for top 5 ground-

truth variants;  810 

b, Root mean squared error (RMSE) and c, mean absolute error (MAE) evaluated monthly for 

dominant variants after 1 October 2023 (HK.3, BA.2.86, JN.1, KP.2, KP.3).  

 

Extended Data Fig.3 | Evaluation of model performance in predicting the top 10 dominant 

variants during the JN.1 era 815 

a–b, Performance of five methods—DeepCoV, EVEscape, E2VD, DMS(fit), and growth 

advantage—in recovering true dominant variants across increasing top-k prediction thresholds. a, 

Recall computed against three major circulating variants (JN.1, KP.2, and KP.3). b, Corresponding 

false discovery rate (FDR). 

c, Venn diagrams showing predicted (purple) and ground truth (blue) dominant variants at k = 5 820 

(top) for each method.  

d–e, Extended recall (d) and FDR (e) performance across k for the top 10 circulating variants during 

the JN.1 period, defined as: JN.1, KP.2, KP.3, HK.3, JN.1+R346T, JN.1+F456L, HK.3+A475V, 

KP.2+G482V+K484E, KP.2+L456V+K478T, and KP.2+ins483V+K484E. 

f, Venn diagrams comparing predicted versus observed dominant variants at k = 20.  825 

 

Extended Data Fig.4 | Dynamic evaluation of model performance across variant prevalence 

thresholds during the JN.1 era 

a, Model performance metrics—accuracy, recall, and FDR—evaluated under varying prevalence 

thresholds used to define dominant variants. The FDR curve is annotated with the number of actual 830 

dominant variants for each prevalence threshold, along with the corresponding true variants added 

for each proportion threshold. 
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b, Comparison of predicted versus actual dominant variants under threshold definitions of >35% 

variant prevalence. The number of strains identified by each methods are labeled in parentheses. 

 835 

Extended Data Fig.5 | DeepCoV performance on XBB-era variants 

a, Correlation between predicted and observed variant frequencies at evaluation time (t₁) using a 

model trained on spike sequences post-XBB emergence, for each strain prior to reaching its peak 

prevalence. Colors representing different RBD lineages. Each point denotes a variant, colored by 

lineage; Pearson’s correlation coefficient (r) is indicated. 840 

b, Growth trajectory reconstruction of dominant variants after 1 September 2022. Weekly 

aggregated predictions (dashed lines, t₁ inferred from t₀) are compared with observed prevalence 

(solid lines, measured at t₀). Shaded areas represent mean ± s.d. across each week. 

c, Dynamic assessment of model performance across varying definitions of dominant variants based 

on prevalence thresholds. Accuracy, FDR, and recall are reported under each threshold setting. The 845 

FDR curve is annotated with the number of actual dominant variants for each prevalence threshold, 

along with the corresponding true variants added for each proportion threshold. 

d, Comparison of predicted versus actual dominant variants under threshold definitions of >15% 

and >30% variant prevalence. The number of strains identified by each methods are labeled in 

parentheses. 850 

  

Extended Data Fig.6 | Ablation study evaluating the contribution of individual components to 

DeepCoV performance 

a, Comparative RMSE across the full model and three ablated models: (i) removal of immune 

background features, (ii) exclusion of DMS data, and (iii) replacement of evolutionary features with 855 

ESM-2 embeddings. 

b, Top-k prediction performance over time for the ablated models. Success rate is reported for the 

top 1, and jaccard index is reported for the top 5 predicted dominant variants across varying k values 

 (i.e., the number of predicted variants considered). Error bars represent ±1 s.e.m. across all 

evaluation time points. 860 

c, Predictive metrics (false discovery rate and recall) stratified by variant prevalence thresholds 

across ablated models. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2025. ; https://doi.org/10.1101/2025.10.17.683094doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.17.683094
http://creativecommons.org/licenses/by-nc/4.0/


 

30 

 

d, Performance of ablated model in recovering true dominant variants across increasing top-k 

prediction thresholds, evaluated using recall, FDR and accuracy computed against top ten major 

circulating variants (JN.1, KP.2, KP.3, HK.3, JN.1+R346T, JN.1+F456L, HK.3+A475V, 865 

KP.2+G482V+K484E, KP.2+L456V+K478T, and KP.2+ins483V+K484E).  

 

Extended Data Fig.7 | Model performance in detecting minor SARS-CoV-2 variants 

Growth trajectory reconstruction for subdominant and low-prevalence variants. Weekly aggregated 

predictions (lines colored purple, t1 inferred from t0) are compared with observed prevalence (lines 870 

colored blue, measured at t0). 

  

Extended Data Fig.8 | Longitudinal performance evaluation of predictive model 

a, The dataset composition of model continuous prediction. For each t0, the future prevalence for 1-

60 days (t1) later are predicted. 875 

b, Evaluation of model performance on the major lineage test set across varying forecasting horizons, 

with a fixed t0 and incrementally increasing t1. 

c, Early forecasting of future prevalence trajectories (1–60 days ahead) for dominant variants. Purple  

lines show model-predicted prevalence at future time points (t1, t0+1 to t0+60) using data available 

at t0; blue solid lines show observed prevalence before t0; blue dashed lines show observed 880 

prevalence at the corresponding future time points (t1). 

 

Extended Data Fig.9 | Ablation on in silico mutational hotspots scanning  

Comparison of the full and ablated models in detecting JN.1 mutational hotspots. True hotspots 

(positions 346 and 456) are highlighted in red. In silico deep mutational scanning of JN.1 single-885 

point mutants at 20 March 2024 illustrates the predicted fitness landscapes under each ablation 

setting. 

  

Extended Data Fig.10 | DeepCoV performance of model trained on spike protein 

a, Pearson’s correlation coefficient (r) of predicted versus observed variant frequencies at time t1 890 

using model trained on SARS-CoV-2 spike. Each point represents a variant, colored by lineage.  
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b, Growth trajectory reconstruction using the renewed test set. Weekly aggregated predictions 

(dashed lines, t1 inferred from t0) are compared with observed prevalence (solid lines, measured at 

t0). Shaded regions represent mean ± s.d for days in a week. 

c, Prevalence of site-specific mutations and deletions in KP.3 prior to the emergence of convergent 895 

evolution, identifying early mutational hotspots. “X” denotes deletion mutations.  

d, Dynamic assessment of spike-based model performance across varying definitions of dominant 

variants based on prevalence thresholds. Accuracy, recall, and FDR are reported under each 

threshold setting. The number of actual dominant variants for each prevalence thresholds are labeled. 

 900 
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Extended Data Figure 2
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Extended Data Figure 3
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Extended Data Figure 4
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Extended Data Figure 7
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Extended Data Figure 9
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