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Abstract

Early identification of emerging dominant SARS-CoV-2 variants is essential for effective pandemic
preparedness, yet existing methodologies face significant limitations. Experimental
characterizations are costly and not feasible for real-time surveillance, whereas existing
computational approaches cannot achieve satisfactory precision in predicting future dominant
lineages and fail to capture the spatiotemporal dynamics of fitness under evolving host immune
pressures. Here, we introduce DeepCoV (DMS-Empowered Evolution Prediction of CoronaVirus),
a deep-learning framework for the dynamic identification of novel variants with high potential to
become prevelent. It integrates deep mutational scanning (DMS)-derived mutation phenotypes with
epidemiological surveillence data reflecting historical viral evolution and the dynamic fitness
landscape. DeepCoV accurately forecasted the dominance of recently circulating lineages a month
in advance, achieving a 90% reduction in false discovery rate while capturing temporal and
geographic dynamics of variant spread and reconstructing their regional prevalence trajectories.
Moreover, DeepCoV identified mutational hotspots of Omicron-derived backbones in silico,
revealing convergent evolution trends. This scalable solution enables timely identification of
immune-evasive variants and prospective alert of critical mutations, providing actionable insights

for vaccine updates and pandemic surveillance.
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Main

The evolutionary arms race between pathogens and human immunity emphasizes the necessity of
proactive surveillance of emerging variants'-. For rapidly evolving viruses such as SARS-CoV-2,
early identification of high-growth lineages is essential to pandemic resilience, enabling timely

updates to vaccines and informing the development of antibody-based therapeutics*+°.

Although high-throughput experimental approaches such as DMS can generate valuable data and
insights into the functional impact of individual mutations, their substantial resource requirements
restrict their application for continuous surveillance*®->2. Moreover, DMS-based methods are
inherently incapable of capturing the evolutionary dynamics of full viral sequences within
populations, as they typically probe only a subdomain of the full spike protein or restricted set of
mutations and face challenges in modeling epistatic interactions, given the prohibitively large
mutational combinatorial space®'->3. These methods proved critical during the early phases of the

COVID-19 pandemic but have become increasingly impractical.

Statistical models based on sequence frequency dynamics—such as linear growth advantage
estimation—offer alternative tools for inferring variant fitness directly based on epidemiological
surveillance>*. However, their predictive reliability declines substantially when data remain sparse,
especially during the early stage of novel lineage emergence and in the post-pandemic period, when
sequencing efforts have markedly decreased. More sophisticated frameworks, including EpiScore
and PyRO, incorporate evolutionary constraints by modeling sequence prevalence over time>>-%,
However, they often struggle to pinpoint the most prevalent circulating strains. Without
incorporating sequence information, such epidemiological analyses remain largely
phenomenological and offer limited mechanistic insight into why certain variants rise to dominance
while others fade. Meanwhile, reliably capturing sequence-level features remains inherently

challenging for statistical approaches.

Artificial intelligence (Al)-based methods have thus emerged as promising tools for forecasting viral
evolution®6-%5, Al-based approaches can overcome the combinatorial explosion arising from multiple

mutations within viral sequences and enable the integrated learning of large, diverse strain sets,
2
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including capturing amino acid sequence evolutionary patterns. However, existing models remain
limited in their ability to prospectively identify emerging dominant variants with sufficient accuracy.
Viral protein sequence or structure-based approaches such as EVEscape (variational autoencoder
based) and TEMPO (Transformer-based) exhibit strong representational capacity but typically
overlook functional data, particularly experimentally derived measurements of antibody escape and
other virological phenotypes captured through DMS3%63, Methods such as E2VD and CoVFit have
advanced by leveraging mutational phenotypes, but they still often neglect the dynamic host immune
context, which is critical for capturing the spatiotemporal dimensions of viral transmission®2®,
Moreover, most current computational models fail to capture the dynamic viral fitness landscape
under the co-evolution of host immune pressures, frequently underperforming compared to even

simple linear growth advantage estimators in real-world predictive applications.

Despite recent progress in both experimental and computational approaches, a major challenge
remains in jointly capturing the spatiotemporal dynamic fitness landscape for viral evolution under
evolving population immune pressures or herd immunity. Even within the same lineage,
transmission advantages can diverge substantially across regions and time with distinct immune
history. For instance, the Omicron sublineage XBB.1.5 exhibited markedly different growth
trajectories in North America and parts of Asia, where preexisting immunity was shaped
predominantly by prior BA.5 or BA.2.75 infections, respectively, highlighting how regional immune
histories can modulate the apparent fitness of otherwise genetically similar variants. Meanwhile,
DMS has been underutilized for predictive purposes, as most applications have remained descriptive,
focusing on characterizing escape mutations rather than integrating functional data into dynamic

evolutionary modeling#*-49-31,

To bridge this gap, building on our long-term experience and systematic understanding of DMS on
viral antigens, we developed DeepCoV (DMS-Empowered Evolution Prediction of CoronaVirus),
a predictive framework that integrates DMS-derived functional phenotypes, evolutionary sequence
information, and epidemiological data reflecting immune pressures in human populations. By
leveraging Transformer-based architectures, DeepCoV learns the mechanistic relationships between

mutation effects and variant fitness, while incorporating background epidemiological data and
3
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90  related sequence with pretrained protein language models to accurately model viral evolution at
spatiotemporal resolution®%4¢7. Collectively, DeepCoV provides a scalable and biologically
grounded framework for forecasting SARS-CoV-2 evolutionary trajectories, thereby enhancing

global preparedness and informing timely public health interventions.

95  Results
DeepCoV architecture

Accurately forecasting the evolutionary dynamics of SARS-CoV-2 requires integrating information
that reflects both the intrinsic viral fitness for infection and transmission, and the impacts of
population immune pressure. To this end, we designed DeepCoV, a neural network framework that
100  predicts the future prevelence of any SARS-CoV-2 Spike or RBD variant, leveraging three
complementary data collected during months before the time of prediction: 1) Mutiple sequence
alignment (MSA) of viral antigen sequences including the variant for prediction and other co-
circulating strains that prevail and compete within the same environment. 2) The proportions of the
above strains since 180 days before the day of prediction, capturing the recent evolution of viral
105  fitness with the population-level immunity and selective pressure considered implicitly, and
endowing the model with the ability to learn the spatiotemporal dynamics of variant circulation. 3)
Auxiliary functional mutation phenotypes derived from DMS quantify the impacts on virological
characteristics and antigenicity of single mutations on the antigen, thereby grounding the model in
experimentally validated datasets and molecular mechanisms. (Fig. | and Extended Data Fig. 1).
110 For sequence modeling, we implemented an evolutionary module that captures amino acid
substitution patterns in the target sequence and the most prevalent sequences at the time using the
pretrained ESM-MSA-1b model, which learns evolutionary constraints from MSA®. To incorporate
temporal dynamics, the historical proportion embedder employs a long short-term memory (LSTM)
network to model prevalence trajectories over a sliding window spanning recent months (typically
115 180 days) ®. These sequence and prevalence representations are concatenated and passed through
an axial-attention module to capture residue-prevalence dependencies®. This architecture inherently
encodes population-level immune histories by integrating background sequence context and

prevalence dynamics, thereby reflecting how prior infections and vaccinations shape the viral fitness
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landscape and influence variant emergence. Finally, the DMS processor incorporates quantitative

120  mutational phenotypes, including antibody escape, human antisera evasion, ACE2 binding affinity,
and protein expression, offering mechanistic insights into variant viability and transmissibility*344¢-
S170-77 By integrating these heterogeneous data streams, DeepCoV learns how individual amino acid
substitutions and their functional consequences translate into shifts in population-level prevalence,
thereby linking molecular evolution with epidemiological outcomes. This unified representation

125  enables the model to infer variant fitness, anticipate lineage competition outcomes, and forecast
regional prevalence trends over future time windows. Finally, DeepCoV is expected to predict the
future proportion of a certain strain at any time point, with the sequences of itself and other co-
circulating strains, their historical proportions, and the impacts of mutations carried by the strain
from DMS as inputs.

130
DeepCoV accurately predicts predominant variants

We first evaluated DeepCoV for the early identification of emerging dominant JN.1 variants using
a retrospective approach!”193878-83  Qpecifically, the model was trained exclusively on
epidemiological records and receptor binding domain (RBD) sequences collected prior to October

135 2023, along with DMS profiles generated before the emergence of JN.1 (Fig. 2a). To prioritize
learning from dominant lineages, low-prevalence variants were filtered out from the training dataset.
The remaining RBD sequences were then randomly assigned to the training and validation sets at a
9:1 ratio, ensuring that all members of a given cluster were confined to the same split and preventing
data leakage due to temporal dependencies.

140
DeepCoV demonstrated high predictive capacity, evidenced by a strong correlation (Pearson’s r =
0.969) for historically dominant lineages (Fig. 2b). We systematically compared DeepCoV with
conventional growth advantage fitting method and state-of-the-art deep learning models, including
E2VD and EVEscape, to evaluate their performance in meeting real-world pandemic surveillance

145  requirement®®%, We first assessed how early these methods could correctly prioritize the known
dominant variants (JN.1, KP.2, and KP.3) among the top predicted lineages. DeepCoV uniquely

identified IN.1, KP.2, and KP.3 as top dominance candidates among all the RBD sequences appeared
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since October 2023, well ahead of their observed dominance. In contrast, EVEscape successfully
predicted only KP.2, and E2VD failed to detect any of the dominant variants (Fig. 2c).

150
Detailed benchmarking across different numbers of top-ranked predicted variants confirmed
DeepCoV’s superior ability to identify emerging dominant lineages. To comprehensively assess
predictive performance, we conducted evaluations using both time-resolved dominant variants and
a fixed set of globally prevalent strains under varying k-candidate thresholds. Ranking-based

155  evaluation was adopted to minimize biases introduced by raw score distributions. For the time-
resolved ground truth, we evaluated two metrics across time points: the success rate of top-1 versus
top-k prediction, and the Jaccard overlap ratio between the top-£ predicted and top3 or top5 observed
variants (Fig. 2d,e and Extended Data Fig. 2). For the static task involving a fixed set of globally
prevalent strains, the objective was to rank variants with the highest overall prevalence appeared at

160  the top. Across both evaluation schemes, our model consistently outperformed baseline methods,
especially at lower k thresholds (Fig. 2e,f and Extended Data Fig. 2). For both top-3 versus top-3
and top-5 versus top-5 comparison, DeepCoV successfully identified all major variants; in contrast,

other methods achieved at most one overlapping variant (Fig. 2d).

165  As for the fixed-ground-truth evaluation using the top globally prevalent strains across dates in the
test set, DeepCoV also achieved notably higher recall and substantially lower false discovery rates
(FDR) at top-k candidate thresholds below 40 (Extended Data Fig. 3a,b,d,e). For top 3 dominants
prediction, DeepCoV correctly identified JN.1, KP.2, and KP.3 as the subsequently prevailing
lineages at k =5, with closely related subdominant variants JN.1+F456L ranked immediately below
170  (Extended Data Fig. 3c). To further assess robustness, we relaxed the dominance criterion to include
the top 10 most prevalent variants and evaluated performance at £ = 20. Even under this broader
definition, DeepCoV continued to outperform baseline methods (Extended Data Fig. 3f). Overall,
its predictive accuracy remained consistent across a range of £ values, and was particularly strong
at lower £ thresholds. This ability to ensure that true dominant variants are captured within a small
175 set of candidate sequences has significant implications for timely vaccine design and targeted public

health interventions.
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The fitness scores predicted by DeepCoV have an intrinsic quantitative interpretation, allowing
them to be directly mapped to real-world variant prevalence. To account for varying definitions of
180  dominance, we assessed model sensitivity using a dynamic three-stage benchmarking framework
based on surveillance data: T1 (>10 sequences, initial emergence), T2 (>30% growth advantage over
a 7-day window with >100 sequences), and T3 (prevalence exceeding 5—50% while maintaining >15%
growth advantage). For each RBD sequences appeared since October 2023 and reach T1, we
evaluated prediction success relative to T2 and T3 (Extended Data Fig. 4). Across all prevalence
185  threshold beyond 5%, DeepCoV achieved high recall, and accuracy with low FDR. At 35%
prevalence threshold, all three predictions were correct. In contrast, the commonly used growth
advantage—based method yielded 63 candidate variants. These results highlight DeepCoV’s ability
to accurately identify dominant variants without relying on growth advantage, while also enhancing
the efficiency of growth-based methods by substantially narrowing the candidate space.
190
To assess the broader applicability of DeepCoV, we retrospectively evaluated its performance on
earlier SARS-CoV-2 XBB lineage data, using a dataset partitioned at September 2022 and restricted
to available DMS profiles from BA.1, BA.2, and BA.5 (Extended Data Fig. 5). Despite the reduced
size and scope of the training set, DeepCoV achieved a strong correlation between predicted and
195  observed prevalence (Pearson’s » = 0.957) and correctly identified the subsequent emergence of
dominant variants XBB.1.5 and BQ.1.1, while slightly overestimating the prevalence of HV.1.
These results underscore its robustness and predictive potential across distinct phases of SARS-

CoV-2 evolution.

200  To investigate the contributions of individual model components and biological data modalities, we
performed systematic ablation studies. Four model variants were constructed by selectively
excluding key information: (1) immune background profiles, retaining only sequence and
prevalence data; (2) DMS phenotypes, preserving sequence and immune trend inputs and replace
DMS module with linear layers; and (3) evolutionary sequence context, replaced by ESM-2

205  embeddings to isolate the effect of evolutionary modeling. Removal of any individual module
resulted in a marked decrease in predictive performance (Fig. 2g,h and Extended Data Fig. 2b,c).

We conducted the ablation experiments under both the dynamic dominant strain selection and global
7
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dominant strain selection settings, and compared the RMSE of models trained under these different
conditions. Both the DMS and immune-background modules were critical for accurately detecting

210  dominant strains, substantially reducing FDR while maintaining recall. Moreover, eliminating the
proportion or ESM-MSA-1b modules rendered the model incapable of training. Together, these
results highlight the essential and collaborative contributions of immune landscape dynamics,
evolutionary sequence context, historical prevalence trends, and functional mutational phenotypes
to the overall predictive capacity of DeepCoV.

215
DeepCoV captures variant spatiotemporal dynamics

Beyond accurate early variant identification, DeepCoV effectively captures the spatiotemporal
dynamics of SARS-CoV-2 variant spread, demonstrating substantial improvements over existing
methodologies. We further reconstructed the evolutionary trajectories of dominant SARS-CoV-2
220  variants with high temporal resolution using DeepCoV. The model effectively captured the full
expansion and decline cycles of major JN.1 clades, maintaining stable predictive accuracy
throughout the JN.1-dominant period (Fig. 3a). DeepCoV maintained consistently high precision
over time, with major strain predictions showing slightly larger but acceptable fluctuations (mean
absolute error (MAE) <0.1; root mean square error (RMSE) <0.15) (Extended Data Fig. 8).
225  Importantly, DeepCoV demonstrated sensitivity to subtle early growth signals, successfully
forecasting rising of dominant variants even from low initial prevalence (<5%). Notably, despite
differing from its ancestral BA.2.86 lineage by only a single RBD substitution (L455S), the rapid
rise of JN.1 was correctly captured by DeepCoV as the dominant variant. This highlights
DeepCoV’s capacity to distinguish variants with minimal genetic differences but markedly
230  divergent epidemiological trajectories, underscoring its sensitivity to functionally meaningful
mutations. In addition to major lineages, the model faithfully reconstructed the growth trajectories
of subdominant variants such as JN.1+F456L and JN.1+R346T, as well as high-growth advantage
but ultimately low-prevalence lineages including JN.1+K403R and JN.1+N417K (Extended Data
Fig. 8). DeepCoV also showed high specificity in handling non-dominant variants, with predicted
235  peak prevalence consistently remaining below 3%. Moreover, even when the training set is restricted

to data prior to the emergence of XBB, the model also successfully reconstructed the growth
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trajectories of all major variants in the test set. Notably, even when trained exclusively on pre-XBB
data, DeepCoV successfully forecasted the emergence of IN.1 sublineages (Extended Data Fig. 5b).
These findings underscore the model’s utility for monitoring fine-scale viral evolution and guiding

240  timely public health responses, including vaccine strain selection.

By intrinsically incorporating regional immune landscape variations, DeepCoV successfully
captures geographically distinct transmission patterns. The model accurately reconstructed
intercontinental divergence patterns, clearly capturing the sequential emergence of KP.2 from
245  Europe to North America and subsequently Asia (Fig. 3d). It also correctly identified elevated
prevalence of variants such as BQ.1.1 and XBB in Western populations relative to Asia, while
highlighting the regional dominance of HK.3 in Asia, reflecting regional differences in pandemic
responses and immune imprinting. Although other models may account for temporal factors,
DeepCoV uniquely combines spatiotemporal resolution with proactive forecasting and
250  quantitatively validated accuracy, offering improved interpretability in complex epidemiological

settings.

Ablated models were further assessed on growth trajectory reconstruction (Fig. 3¢). The no DMS
variant erroneously overestimated the growth advantage of BA.2.86+K478E, underscoring the
255  essential role of the DMS module in mitigating false positives. Moreover, removing any single
module eliminated the early prediction of KP.2, indicating that complementary signals from multiple

modules are required to support the model’s overall performance.

To achieve finer period forecasting, we developed a continuous prediction model employing a
260  LSTM network capable of forecasting variant trajectories over subsequent 1 to 60-day windows
(Extended Data Fig. 8). This approach maintained robust predictive performance with low RMSE,
comparable to the baseline model, although a slight decline in accuracy was observed over extended
forecasting intervals (Extended Data Fig. 8b). Importantly, it was also capable of anticipating the
future trajectory of dominant variants over a sustained period, even from early time points (Extended
265 Data Fig. 8c ). Whereas the 30-day model focuses on short-term qualitative dominance prediction,

the continuous model characterizes long-term prevalence dynamics, pinpointing when variant
9
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expansion accelerates or decelerates. This framework enhanced DeepCoV's suitability for real-time

surveillance and proactive public health planning.

270  In silico mutational hotspot scanning
Leveraging DeepCoV’s ability to capture evolutionary dynamics, we conducted analysis to in silico
identify mutational hotspots within the SARS-CoV-2 RBD, aiming to understand the driving forces
behind immune escape mutations during convergent evolution. We computationally generated all
possible single-site RBD mutants for representative convergent lineages, including JN.1 and XBB

275  variants, and applied models trained on temporally matched datasets from the respective JN.1 or
XBB eras. By predicting time-resolved evolutionary scores for each mutation, we dynamically
mapped site-specific evolutionary pressure and identified candidate hotspots likely to contribute to

future adaptation (Fig. 4a).

280  Our analysis successfully identified mutational hotspots at residues R346T and F456L in JN.1,
which later became defining mutations in emerging strains such as KP.2 before their prevalence
achieving 5% (Fig. 4c)*. As expected, site like 403, previously overestimated by DMS-based assays,
did not exhibit notable predicted evolutionary potential. Similarly, DeepCoV accurately identified
key mutational hotspots associated with subsequent variant dominance, including the early

285  prediction of the S486P substitution, followed by F456L and L455F mutations within the XBB
lineage>>3485, These predictions accurately forecasted the sequential "FLip" mutation wave,
reflecting real-world evolutionary trajectories. Importantly, DeepCoV identified these mutation
patterns significantly ahead of widespread detection; for instance, the S486P hotspot could be
predicted before XBB.1.5 (XBB with the S486P mutation) became detectable in global sequencing

290  data(Fig. 4b). Subsequently, the emergence of residues 455 and the combination 455+456 mutations
was identified in early evolutionary stages of variants like EG.5 and HK.3, aligning with structural
insights suggesting compensatory functional interplay between these residues. Our findings
demonstrate that DeepCoV effectively captures intrinsic residue-level drivers of evolutionary
convergence. By combining temporal modeling of mutation phenotypes with sequence-based

295  predictions, our approach mirrors the functional resolution provided by DMS experiments but with

added temporal insights into mutation dynamics.
10
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We further assessed the contribution of individual modules to JN.1 mutational hotspot detection and
forecasting of future evolutionary trajectories (Extended Data Fig. 9). All ablated model variants
300  exhibited a pronounced loss of hotspot discrimination, with only the F456L mutation detected in the
no DMS model—Ilikely reflecting prior selection signals from lineages such as XBB, where F456L
conferred marked escape potential. Collectively, these complementary modules act synergistically

to support reliable prediction of future mutational trends.

305 DeepCoV generalizes to future SARS-CoV-2 evolution
Recently, increased immune pressure on the spike protein’s N-terminal domain (NTD), which
facilitates viral entry, has led to elevated mutational activity, establishing it as a secondary hotspot
of adaptive evolution®¢-*, Variants such as XEC (T22N/F59S) and KP.3.1.1 (S31del) exemplify this
trend, reflecting the evolving selective pressures shaping SARS-CoV-2’s immune escape

310  mechanisms’>#1:90-93, To capture the evolutionary shift, we extended DeepCoV to be trained on the
full spike protein sequences, recalculating prevalence metrics based on unique spike clusters while
preserving the original model architecture (Extended Data Fig. 10). Considering that most DMS
measurements outside the RBD region are unavailable, which could interfere with model training,
the updated model excluded the DMS module. The effect of removing this component could be

315  partially compensated by the expanded number of Spike sequences incorporated into the training

data.

The refined approach maintained excellent prediction accuracy and consistently low FDR for
dominant variants, while recall briefly decreased at intermediate then subsequently recovering at
320  higher thresholds for widely circulating variants. Moreover, the updated model robustly
reconstructed the evolutionary trajectories of complex variants such as KP.2.3
(KP.2+S31del+H146Q) and KP.3.1.1 (KP.3+S31del), demonstrating strong generalizability. In
addition, in silico mutational scanning of the NTD successfully identified S31 deletions as potential
immune escape mutations, which had been suggested to enhance immune escape through allosteric
325 modulation of RBD-antibody interactions mediated by additional NTD glycosylation’'. These

results underscore DeepCoV's robust capability to generalize to previously underrepresented
11
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structural domains and highlight its utility in modeling future evolutionary adaptations.
We updated the test dataset till May 2025 to evaluate DeepCoV’s performance against recently
emergent strains, including LP.8 and KP.3+A435S whose peak prevalence exceeded 10% globally.
330  The model maintained strong predictive accuracy (Pearson’s » = 0.968; Fig. 5b), accurately
forecasting the emergence of LP.8 and continuing to perform well on expanded lineages such as
IN.1, KP.2, and KP.3. Retrospective in silico mutational scanning of KP.3 and LF.7 revealed early
detection of future-dominant mutations (Fig. 5a,d). Notably, A435S was identified as a prominent
hotspot approximately one month before the widespread emergence of KP.3+A435S, while residue
335 475, harbored by later emerging LF.7.2.1 strain, was similarly highlighted during pre-emergence
scans. We further tested the model’s ability to resolve geographic prevalence differences by
evaluating its prediction of NB.1.8.1 spatial dynamics’. As shown in Fig. 5¢, DeepCoV accurately
identified the disproportionately high prevalence of NB.1.8.1 in Asia relative to other regions.
Together, these findings demonstrate DeepCoV’s continued ability to anticipate the emergence and
340  geographic distribution of newly arising variants and mutational hotspots, even beyond its original

training horizon.

Discussion

One of the major challenges in SARS-CoV-2 surveillance and vaccine design lies in both the timely
345  identification of emerging dominant variants after their emergence and the anticipation of high-risk
lineages before they arise. To address this, we developed DeepCoV, a computational framework that
integrates key evolutionary drivers—viral MSA patterns, mutational phenotypes from DMS, and
epidemiological data reflecting historical immune pressures—to effectively predict SARS-CoV-2
variant prevalence. DeepCoV employs the ESM-MSA-1b to capture evolutionary constraints from
350  sequence alignments, integrates DMS-derived phenotypic data through Transformer-based modules,
and models temporal epidemiological trends using LSTM networks. By integrating sequence
constraints, DMS-derived mutational effects, and temporal prevalence trends, and by formulating
the training objective to emphasize early prediction of dominant strains, DeepCoV achieves
markedly lower FDR and reliably identifies dominant variants ahead of conventional surveillance

355  methods. Moreover, it captures global and regional variant prevalence trajectories and successfully

12
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predicts evolutionary mutational hotspots in different dominant strain eras, serving as a robust and
scalable tool for real-time surveillance of emerging viral populations. Ultimately, DeepCoV ofters
an effective early warning system that enhances public health preparedness by supporting timely
policy decisions, optimizing vaccine strategies, and guiding surveillance efforts.

360
Despite its strengths, DeepCoV has several limitations. The scarcity of comprehensive DMS data
for certain protein domains—particularly regions outside the RBD—together with inherent
sequencing errors in epidemiological datasets, may affect predictive performance. Moreover,
epistatic effects are not explicitly modeled, and extending computational predictions to incorporate

365  combinatorial mutations from DMS data could improve the representation of these
interactions*74%-33.70.94 Future refinements might also integrate additional data modalities, such as
structural protein information, to further enhance predictive accuracy and generalizability’%.
Meanwhile, although DeepCoV indirectly reflects population-level immunity through prevalence
dynamics, it does not yet capture the full complexity of the evolving immune landscape. Future in

370  silico virus—immunity co-evolution models that jointly learn viral antigenicity and host immune
adaptation may offer a more mechanistic understanding of immune-driven viral evolution. Finally,
the reliability of DeepCoV’s predictions is influenced by the breadth and representativeness of

available sequence prevalence data, highlighting the value of continued global genomic surveillance.

375  In conclusion, by integrating the comprehensive epidemiological and DMS datasets with frontier
deep-learning-based protein language models, DeepCoV unifies evolutionary, functional, and
epidemiological insights to build a reliable platform for the identification and prediction of prevalent
SARS-CoV-2 strains. The model could be retrained and utilized in other fast-evolving epidemic
viruses with enough datasets, such as influenza and RSV, once corresponding DMS datasets become

380  available. Collectively, these innovations establish DeepCoV as a powerful tool for global health
preparedness, enabling proactive responses to emerging infectious threats and informing timely

vaccine and surveillance strategies.
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405

Methods

Data and preprocessing

We obtained SARS-CoV-2 sequences with collection/submit dates from GISAID and retained

human spike entries after de-duplication and MAFFT alignment®>%. Quality filters required spike
410  length >1,230 aa, <10 non-standard residues, and ambiguity-free RBD; lineage-specific insertions

(e.g., BA.1 ins214:EPE; BA.2.86 ins16:MPLF) were preserved. Unique RBDs were clustered and

renamed relative to parental lineages for downstream modeling.
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Spatiotemporal dataset construction
415 For each representative region (global, North America, Europe, Asia, USA, UK, Japan), daily counts
of unique RBDs were computed and 7-day smoothed. Training/validation data used to snapshots
with 16 top circulating background clusters in the preceding 180 days. At each reference date to, the
prediction target was the variant’s relative prevalence 30 days later (t; = to+30d). Ground-truth labels
were retained only when the cumulative number of sequences in the t; evaluation window was >100.
420  We stratified to across five pandemic phases, limited post-2023 analyses to global counts due to

coverage decline, and split train/validation (90:10) by sequence to avoid leakage.

Deep mutational scanning features
We standardized DMS datasets covering entry efficiency, ACE2 binding, expression, and
425 serum/monoclonal-antibody escape from public and internal sources, aligning them to spike and
indexing by antigen, feature, site, mutant, and (where applicable) antibody. Temporal masking
ensured only features available prior to to were used; antibody escape was re-clustered into 56
epitope groups; per-sequence vectors were produced by scanning one-hot sequences against aligned
DMS tensors.
430
Model overview
DeepCoV integrates (i) frozen ESM-MSA-1b embeddings of the target and contemporaneous
background sequences; (ii) a background-ratio encoder that summarizes 180-day variant frequency
histories; and (iii) a DMS encoder gathering sequence phenotypes. Sequence and background
435 signals are fused via an axial attention module (row/column transformers) and a transformer encoder
that sequentially incorporates DMS features. Outputs are future variant proportions at a single

horizon (t: = to+30 d). Additional details are provided in the Supplementary Methods.

Training and objective

440  Models were trained with AdamW (learning rate 1074, weight decay 1072) with 300-step warm-up
and mixed precision under the PyTorch framework on NVIDIA A100 GPUs. The loss is a log-
transformed, sample-weighted MSE with (i) a validity mask based on t: coverage (=100 isolates)

and (ii) labelled proportion-dependent weights to mitigate class imbalance; for the continuous model,
15
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an additional per-day Gaussian weight (u=30, 6=10) emphasizes informative t; horizons. Early

445  stopping was applied as specified.

Baselines and benchmarking

Growth advantage. For each RBD cluster, daily frequency f{(t) is fit by a logistic curve to estimate

growth rate a. Growth advantage is defined as GA=e** ¢ — 1, with generation time g=7 days; 95%
450  ClIs are reported.

EVEscape. For each candidate RBD, mutations are computed relative to a reference and per-

mutation EVEscape scores are aggregated to yield a composite sequence-level score, which is used

to rank variants in the evaluation window.

E2VD. We re-trained E2VD on an ESM-2 backbone and combined three sub-modules—ACE2
455  binding, expression, and antibody escape—using an asymmetric scheme that penalizes decreases in

expression/ACE2 (below functional thresholds) and rewards increases in escape (above a

permissive cutoff). The final score is the sum of exponentiated deviations from empirically defined

thresholds.

Temporal/Ranking evaluations. We (i) track monthly dominant variants by taking the mode of
460  day-wise winners per month, harmonizing method outputs (prevalence for DeepCoV/GA; score

ranks for other models) and simulating surveillance lag for DeepCoV; (ii) quantify timeliness as the

earliest date a well-known dominants enters top-N (e.g., 3 or 10); and (iii) run a dynamic top-k

comparison over time. For multiple-truth settings, we report the Jaccard index

|[prediction N truth|

accard(prediction, truth) = —
/ ® ) |prediction U truth|

465 , and for single-truth settings we report prediction success rate (exact cover). (iv) run a static top-k

comparison for well-known dominants.

Generalization

Updated JN.1-era setting. We retain the main model trained on data before 1 Oct 2023 and extend
470  testing to 16 May 2025, with a lineage map that renames unique RBDs relative to parental references.

A major-strain panel (JN.1, KP.2, KP.3, LF.7, LP.§, NB.1.8.1) is used for targeted trajectory

evaluation.
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Spike variant. To satisfy ESM-MSA-1b input limits, spike inputs are truncated to the first 1,023

amino acids (a minor biological compromise for C-terminal tail) while keeping all other processing
475  consistent.

XBB-era variant. To accommodate reduced training data, we decreased the depth of the MSA-

proportion fusion transformer from three to two layers; other components were unchanged.

Continuous model. The output head is replaced with an LSTM to emit daily proportions; the loss

includes a per-day Gaussian weight to emphasize mid-range horizons applied uniformly across
480  samples together with a validity mask for insufficient coverage. (Full loss and masking details in

the Supplementary Information.)

In silico mutational scanning

We generated pseudo single-amino-acid libraries on reference backbones (e.g., XBB.1.5, IN.1,
485  KP.2/3,LF.7) for RBD (331-531) and NTD (14-305; including deletions), scored mutants with era-

matched models, and summarized site-level fitness by averaging positive, residue-normalized

contributions; top positions were visualized via smoothed profiles and sequence logos.

Ablation studies

490  We quantify contributions of major modules via: (i) Sequence encoder swap (ESM-MSA-1b —
ESM-2-150M) with other components fixed; (ii)) No-DMS (replace DMS encoder with two feed-
forward layers to match dimensionality); and (iii) No background strains (encode only the target

sequence and its 180-day prevalence; aggregate histories via LSTM and a transformer feature

aggregator).
495
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Figure Legends
730  Figure 1 | Overview of model architecture and predictive applications
The framework integrates sequence evolution, epidemiological information, and DMS data for
variant dominance prediction, reconstruction of growth trajectory and mutational hotspots scanning.
The emergence date of JN.1 is defined as the earliest date on which the number of JN.1 RBD
sequences exceeds 10.
735
Figure 2 | Accurate early detection of predominant strains by DeepCoV
a, Dataset construction. Training sequences were collected prior to October 1, 2023, including
variants that exceeded 0.5% prevalence for at least one day during the follow-up period. Validation
sets were generated using cluster-based sampling at a 1:10 ratio to minimize temporal data leakage.
740 b, Scatter plot comparing predicted versus observed variant frequencies at the evaluation time point
(t1). Colors representing different RBD lineages.

¢, Timeline of prediction milestones for DeepCoV and baseline methods (E2VD and EVEscape),
25
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showing the performance (ranking reaching top 3 or top 10) for known dominant variants JN.1,
KP.2, and KP.3. Actual emergence events, like >10 sequences, growth advantage > 30% and

745  prevalence >20%, are labeled as reference points. For E2VD and EVEscape, rankings include
variants with sequences appearing within a 2-month window. Solid circles connected by solid lines
indicate successful predictions; dashed lines ending with a cross (%) denote prediction failures. The
light grey shaded region highlights the period during which the true prevalence exceeded 20%. The
inability to rank a dominant variant in the top predictions within this window is considered a failed

750  prediction.

d, Representative comparisons of top-k predicted and observed dominant variants at selected time
points. Venn diagrams show the overlap between the predicted and observed top-k RBD variants
for k=3 (right; 2024-03-18, predicted 30 days in advance) and k=5 (left; 2024-04-27). Predictions
from DeepCoV (top row), EVEscape (middle row), and E2VD (bottom row) are compared against

755  the corresponding observed sets. Variant labels indicate RBD lineage with key escape mutations.
e, Top-k prediction performance over time for three methods: DeepCoV (red), EVEscape (orange),
E2VD (blue) and growth advantage (green). The prediction success rate is shown for the top
predicted dominant variant across varying k values (i.e., the number of predicted variants
considered).

760  f, Top-k prediction performance over time for three methods: DeepCoV (red), EVEscape (orange),
E2VD (blue) and growth advantage (green). The jaccard index is shown for the top 3 predicted
dominant variant across varying k values (i.e., the number of predicted variants considered). Error
bars represent =1 s.e.m. (standard error of the mean) across all evaluation time points.

g, Top-k prediction performance over time for the ablated models. The jaccard index is shown for

765  the top 3 predicted dominant variants across varying k values (i.e., the number of predicted variants
considered). Error bars represent +1 s.e.m. across all evaluation time points.

h, FDR and recall metrics of the ablated models when k=15 for the top 10 circulating variants
prediction during the JN.1 period. The top 10 true circulating variants includes JN.1, KP.2, KP.3,
HK.3, JN.1+R346T, JN.1+F456L, HK.3+A475V, KP.2+G482V+K484E, KP.2+L456V+K478T,

770  and KP.2+ins483V-+K484E.

Figure 3 | DeepCoV captures temporal dynamics and geographic variation in SARS-CoV-2
26
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spread

a, Growth trajectory reconstruction. Weekly aggregated temporal dynamics comparing predicted
775  (dashed lines, proportion at s predicted from to) versus actual prevalence (solid lines, observed at ty).

Shaded regions represent mean =+ standard deviation.

b, Regional prevalence patterns across Asia, Europe and North America. Predicted (dashed lines)

and observed (solid lines) variant proportions were aggregated weekly.

c¢. Ablation study on growth trajectory reconstruction for BA.2.86 + K478E and KP.2. The black

780  solid line indicates the full model and the dashed lines represents the ablated variants.

Figure 4 | Dynamic mutational hotspot scanning in silico

a, Schematic of the mutational scanning workflow. Pseudo single-residue mutational datasets were

generated and evaluated using the predictive model to estimate evolutionary potential for each
785  mutation.

b, Temporal prevalence dynamics of variants containing convergent mutational hotspots. Vertical

dashed lines indicate selected timepoints for in silico scanning.

¢, Predicted mutation preference landscapes for IN.1, XBB, XBB.1.5 and EG.5 prior to the onset of

convergent evolution.

790
Figure 5 | Updating SARS-CoV-2 variant data for future predictions
a, Growth trajectory reconstruction using the renewed test set. Weekly aggregated predictions
(dashed lines, t; inferred from to) are compared with observed prevalence (solid lines, measured at
to). Shaded regions represent mean =+ s.d for days in a week.

795 b, Pearson’s correlation coefficient of predicted versus observed variant frequencies at time  , for

each strain prior to reaching its peak prevalence. Colors representing different RBD lineages. Each
point represents a variant, colored by lineage.
¢, Predicted regional differences in NB.1.8.1 prevalence across Asia, Europe and North America.
Predicted (dashed) and observed (solid) proportions are aggregated weekly.

800  d, Prevalence of site-specific mutations in KP.3 and LF.7 prior to the emergence of convergent

evolution, identifying early mutational hotspots.
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Extended Data Figures
Extended Data Fig.1 | Detailed schematic of model architecture
805
Extended Data Fig.2 | Comprehensive evaluation of dominant variant prediction accuracy and
temporal dynamics.
a, Mean Jaccard overlap ratios between predicted and observed sets of dominant SARS-CoV-2 RBD
variants across varying values of k& (number of top-ranked predictions considered) for top 5 ground-
810 truth variants;
b, Root mean squared error (RMSE) and ¢, mean absolute error (MAE) evaluated monthly for

dominant variants after 1 October 2023 (HK.3, BA.2.86, JN.1, KP.2, KP.3).

Extended Data Fig.3 | Evaluation of model performance in predicting the top 10 dominant
815 variants during the JN.1 era
a-b, Performance of five methods—DeepCoV, EVEscape, E2VD, DMS(fit), and growth
advantage—in recovering true dominant variants across increasing top-k prediction thresholds. a,
Recall computed against three major circulating variants (JN.1, KP.2, and KP.3). b, Corresponding
false discovery rate (FDR).
820 ¢, Venn diagrams showing predicted (purple) and ground truth (blue) dominant variants at £k = 5
(top) for each method.
d—e, Extended recall (d) and FDR (e) performance across k for the top 10 circulating variants during
the JN.1 period, defined as: JN.1, KP.2, KP.3, HK.3, JN.1+R346T, IN.1+F456L, HK.3+A475V,
KP.2+G482V+K484E, KP.2+L456V+K478T, and KP.2+ins483V+K484E.

825  f, Venn diagrams comparing predicted versus observed dominant variants at k£ = 20.

Extended Data Fig.4 | Dynamic evaluation of model performance across variant prevalence

thresholds during the JN.1 era

a, Model performance metrics—accuracy, recall, and FDR—evaluated under varying prevalence
830  thresholds used to define dominant variants. The FDR curve is annotated with the number of actual

dominant variants for each prevalence threshold, along with the corresponding true variants added

for each proportion threshold.
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b, Comparison of predicted versus actual dominant variants under threshold definitions of >35%

variant prevalence. The number of strains identified by each methods are labeled in parentheses.
835

Extended Data Fig.5 | DeepCoV performance on XBB-era variants

a, Correlation between predicted and observed variant frequencies at evaluation time (t:) using a

model trained on spike sequences post-XBB emergence, for each strain prior to reaching its peak

prevalence. Colors representing different RBD lineages. Each point denotes a variant, colored by
840  lineage; Pearson’s correlation coefficient (r) is indicated.

b, Growth trajectory reconstruction of dominant variants after 1 September 2022. Weekly

aggregated predictions (dashed lines, t1 inferred from to) are compared with observed prevalence

(solid lines, measured at to). Shaded areas represent mean =+ s.d. across each week.

¢, Dynamic assessment of model performance across varying definitions of dominant variants based
845  on prevalence thresholds. Accuracy, FDR, and recall are reported under each threshold setting. The

FDR curve is annotated with the number of actual dominant variants for each prevalence threshold,

along with the corresponding true variants added for each proportion threshold.

d, Comparison of predicted versus actual dominant variants under threshold definitions of >15%

and >30% variant prevalence. The number of strains identified by each methods are labeled in

850  parentheses.

Extended Data Fig.6 | Ablation study evaluating the contribution of individual components to

DeepCoV performance

a, Comparative RMSE across the full model and three ablated models: (i) removal of immune
855  background features, (ii) exclusion of DMS data, and (iii) replacement of evolutionary features with

ESM-2 embeddings.

b, Top-k prediction performance over time for the ablated models. Success rate is reported for the

top 1, and jaccard index is reported for the top 5 predicted dominant variants across varying k values

(i.e., the number of predicted variants considered). Error bars represent =1 s.e.m. across all

860  evaluation time points.

¢, Predictive metrics (false discovery rate and recall) stratified by variant prevalence thresholds

across ablated models.
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d, Performance of ablated model in recovering true dominant variants across increasing top-k
prediction thresholds, evaluated using recall, FDR and accuracy computed against top ten major
circulating variants (JN.1, KP.2, KP.3, HK.3, IN.1+R346T, JN.1+F456L, HK.3+A475V,

KP.2+G482V+K484E, KP.2+L456V+K478T, and KP.2+ins483V+K484E).

Extended Data Fig.7 | Model performance in detecting minor SARS-CoV-2 variants
Growth trajectory reconstruction for subdominant and low-prevalence variants. Weekly aggregated
predictions (lines colored purple, t; inferred from to) are compared with observed prevalence (lines

colored blue, measured at to).

Extended Data Fig.8 | Longitudinal performance evaluation of predictive model

a, The dataset composition of model continuous prediction. For each to, the future prevalence for 1-
60 days (t1) later are predicted.

b, Evaluation of model performance on the major lineage test set across varying forecasting horizons,
with a fixed to and incrementally increasing t;.

¢, Early forecasting of future prevalence trajectories (1-60 days ahead) for dominant variants. Purple
lines show model-predicted prevalence at future time points (ti, to+1 to to+60) using data available
at to; blue solid lines show observed prevalence before to; blue dashed lines show observed

prevalence at the corresponding future time points (t;).

Extended Data Fig.9 | Ablation on in silico mutational hotspots scanning

Comparison of the full and ablated models in detecting JN.1 mutational hotspots. True hotspots
(positions 346 and 456) are highlighted in red. In silico deep mutational scanning of JN.1 single-
point mutants at 20 March 2024 illustrates the predicted fitness landscapes under each ablation

setting.

Extended Data Fig.10 | DeepCoV performance of model trained on spike protein
a, Pearson’s correlation coefficient (r) of predicted versus observed variant frequencies at time t;

using model trained on SARS-CoV-2 spike. Each point represents a variant, colored by lineage.
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b, Growth trajectory reconstruction using the renewed test set. Weekly aggregated predictions
(dashed lines, t; inferred from to) are compared with observed prevalence (solid lines, measured at
to). Shaded regions represent mean + s.d for days in a week.

895 ¢, Prevalence of site-specific mutations and deletions in KP.3 prior to the emergence of convergent
evolution, identifying early mutational hotspots. “X”” denotes deletion mutations.
d, Dynamic assessment of spike-based model performance across varying definitions of dominant
variants based on prevalence thresholds. Accuracy, recall, and FDR are reported under each
threshold setting. The number of actual dominant variants for each prevalence thresholds are labeled.
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Extended Data Figure 1
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Extended Data Figure 3

a JN.1 era prediction (top 3 truth) b o JN.1 era prediction (top 3 truth)
T J
1.00 I T -0
>
_ 075 50751
8 3
@ 0.50 I I S 0.501
€ 2
0.25 2 0251
 0.00
. € @ 0.
0.00 : 20 40 60 80 100 L 20 40 60 80 100
! k K
c ' - DeepCoV — EVEscape E2VD — DMS(fit) — growth advantage
v
DeepCoV prediction (k=5) growth advantage prediction (k=5) DMS(fit) prediction (k=5)
DeepCoV growth advantage DMS(fit)
ground truth
ground truth
ground truth JN.1+K403R N KP.3+P384S
Iy JIN.1 JIN.1+K444R v KP.3+G482V
KP2 KP2  N.1+G482V+K484E KP3 KP.3+G482V+K4B4E
KP3  j 1spaseL KP.3 KP.2+G482V+K484E KP 3+T430]
' JN.1+R346T KP.3+N477D
HK.3
E2VD prediction (k=5) EVEscape prediction (k=5)
E2VD EVEscape
ground truth ground truth
HK.3+N354K KP.2+K444R+A475V
IN1 JN.1+S408R+F456L JIN.1 KP.2+L.335S+Q493E
KP.2 KP.2+K403R EE@ KP.2+Q493E
RS INA+NA1TK : KP.2+H445R+Q493E
BA.2.86+A475V KP.3+R3461
d JN.1 era prediction (top 10 truth) e o JN.1 era prediction (top 10 truth)
L ©
1.00 & 1.00
_ 0.75] I | p— £0.75 -
§ { oo >
8 0.50- o [USROSo—— /- 8 0.50
o 2
0.251 /‘l _j:[“L" Q0.25
(0]
@
0.00 @ v v v T © 0.00 - - - - -
20 40 60 80 100 w 20 40 60 80 100
: k k
' — DeepCoV — EVEscape E2VD — DMS(fit) — growth advantage
v

f DeepCoV prediction (k=20)

ground truth

E2VD prediction (k=20)

10

ground truth

1

growth advantage prediction (k=20)

ground truth

DeepCoV

20

10

growth advantage

EVEscape prediction (k=20)

20

ground truth

E2VD

EVEscape

DMS(fit) prediction (k=20)

19

ground truth
DMS(fit)


https://doi.org/10.1101/2025.10.17.683094
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.10.17.683094; this version posted October 20, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Extended Data Figure 4
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Extended Data Figure 5
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Extended Data Figure 6
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Extended Data Figure 7
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Extended Data Figure 9
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Extended Data Figure 10
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